ATO-A information Technology

Technical Services Group

Airport Navigation Aid Database Application
2.0
(AIRNAYV 2.0)

AirNav Web Services
Use Cases and Business Rules

AIRNAV — Wehb Servcies Use Cases and Business Rules 1of 11

(‘

Airport Navigation Aid Database Application 2.0 {AIRNAYV 2.0) FAA - ATO

Revision History

=]
1 VOORO1 12/04/2007 | Draft Version of the Document Frances K. Hubbard

AIRNAV —Web Services Use Cases and Business Rules 2o0f11

fﬂ

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

Table of Content

T IREOAUCTION ettt s s ta s st bt s sre e sresseasressensesesenaanneaeraes 4
1.1 AbDreviations and AGTONYIMIS ...c.cvivieereceeie ettt sttt s meneeee e eeremeeeenens 4
2 USB CBBES .ottt ettt e aeraeserae s e e b ehe s ne s ae s e bes b s e e eme oo nes s eae e seen e e anenen 5
2.1 Use Case Specification: Search Aeronautical Dat@.........ccc.vvvcveerveveecs oo seseenens 6
2.2 Use Case Specification: Add Aeronautical Data........c..c.ccevveevirceeieoreeeeeeeeesesssesneseene 7
2.3 Use Case Specification: Edit AeronautiCal Data.........ccoeevrvvvveeeeireeeeesecreeeseesesneen 8
24 Use Case Specification: Delete Aeronautical Data.........cocveveveereveeeseeecreeeereceer e 10

AIRNAY —Web Services Use Cases and Business Rules 3of11

N
i

Airport Navigation Aid Database Application 2.0 {AIRNAV 2.0) FAA-ATO

1 Introduction

This document fully describes the functionality of Maintain Web Services within the AIRNAV 2.0
system. These requirements are captured in the AVN iSM Use Case format. It details the needs
the system must address to capture and provide data related to AIRNAV 2.0 systern.

Refer to AIRNAV interface control document for implementation requirements related to Web
Services.

1.1 Abbreviations and Acronyms

Refer the document AIRNAYV - Glossary for abbreviations, acronyms and other general
terminology used in the AIRNAY documentation.

AIRNAV -Web Services Use Cases and Business Rules 4of 11

|I

Airport Navigation Aid Database Application 2.0 {AIRNAV 2.0} FAA - ATO

2 Use Cases

The Maintain Web Services module will include following use cases:

Search Aeronautical Data
Add Aeronautical Data
Edit Aeronautical Data
Delete Aeronautical Data

LN

The details of each of the above mentioned use cases are described in this document.

AIRNAV —Web Services Use Cases and Business Rules S5of11

{) :
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

2.1 Use Case Specification: Search Aeronautical Data

2.1.1 Brief Description

This use case describes the process of searching for aeronautical data record(s) in AIRNAV
system. See AIRNAYV Interface Control Documents for implementation details.

2.1.2 Actors

Following are the actors for this use case:
1. Web Services User

2.1.3 Pre - conditions
1. User must have access privileges to AVN Web Services.

2.1.4 Basic Flow of Events

System receives a request for aeronautical data.

System interprets XML based request

System queries database for response.

System returns response in an XML format.

If no records satisfy the request, a standard response xmi will be composed.
System returns respanse in an XML format.

Mmook

2.1.5 Alternate Flows

There are no alternate flows in this use case.

2.1.6 Sub - flows

There are no sub-flows for this use case.

2.1.7 Key Scenarios

There are no key scenarios for this use case.

2.1.8 Post — conditions
There are no post conditions for this use case.

2.1.9 Extension Points
There are no extension points for this use case.

2.1.10 Special Requirements

The requesting web service should have the ability to indicate if the response should have a
Summary or Detail tevel of data.

2.1.11 Additional Information

There is no additional information for this use case.

2.1.12 Business Rules
This function will be used for all requests for aeronautical data.

AIRNAV -Web Services Use Cases and Business Rules 6of11

Airport Navigation Aid Databasé Applicaiion 2.0 (AIRNAYV 2.0) | FAA - ATO

2.2 Use Case Specification: Add Aeronautical Data

2.2.1 Brief Description

This use case describes the process of adding asronautical data via a Web Service. See AIRNAV
Interface Control Documents for implementation details.

2.2.2 Actors

There is only one actor for this use case:
* Web Services User

2.2.3 Pre — conditions
User must have access privileges to AVN Web Services.

2.2.4 Basic Flow of Events

1. System receives a request for addition of aeronautical data.
System interprets XML based request
System valldates and adds data to database.

2
3
4. |f system is unable to add data to database, a standard response xm| will be composed.
5. System returns response in an XML format.

2.2.5 Alternate Flows

There are no alternate flows in this use case.

2.2.6 Sub - flows

There are no sub-flows for this use case.

2.2.7 Key Scenarios

There are no key scenarios for this use case,

2.2.8 Post - conditions
1. A new aeronautical record is added to the database and is searchable.

2.2.9 Extension Points
There are no extension points for this use case.

2210 Special Requirements

There are no special requirements for this use case.

2.2.11 Additional Information

There is no additional information for this use case.

2.2.12 Business Rules
This function will be used for all requests to add asronautical data to the databass.

AIRNAVY -Web Services Use Cases and Business Rules 7of 11

!.‘

Airport Navigation Aid Database Application 2.0 {AIRNAV 2.0) FAA - ATO

2.3 Use Case Specification: Edit Aeronautical Data

2.3.1 Brief Description

This use case describes the process of editing an existing asronautical via a Web Service. See
AIRNAYV Interface Control Documents for implementation details.

2.3.2 Actors

Following are the actors for this use case:
» Web Services User

2.3.3 Pre — conditions
User must have access privileges to AVN Web Services.

2.3.4 Basic Flow of Events

1. System receives a request for update of aeronautical data.

1. System interprets XML based request.

2. System invokes a service to the IFPA Enterprise requesting associated record(s) to the
requested record.

Web Service returns no associated record(s).

System validates and edits aeronautical record.

If system is unable to edit data, a standard response xml will be composed.

Systemn returns response in an XML format.

ook w

3.5 Alternate Flows

3
1. System receives a request for update of aeronautical data.
2. System interprets XML based request.

3

System invokes a service to the IFPA Enterprise requesting associated record(s) to the
requested record.

4. IFPA Enterprise returns a list of associated record(s) and their respective owner(s) that
are linked to the record.

5. System does not allow the update of the aeronautical record

G.

System composes a negative response and returns the list of associated record(s) and
their respective owner(s)

7. System returns response in an XML format.

2.3.6 Sub —flows

There are no sub-flows for this use case.

2.3.7 Key Scenarios

There are no key scenarios for this use case.

2.3.8 Post — condition

An aeronautical record is edited in the database and is searchable.

2.3.9 Extension Points
There are no extension paints for this use case.

AIRNAY —Web Services Use Cases and Business Rules 8of 11

i

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) | FAA - ATO

2.3.10 Special Requirements

The requesting web service should have the ability to indicate if a returning list of associated
records s needed.

2.3.11 Additional Information

There is no additional information for this use case.

2.312 Business Rules
This function will be used for ali requests to edit aeronautical data.

AIRNAV —-Web Services Use Cases and Business Rules 9of11

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} FAA - ATO

2.4 Use Case Specification: Delete Aeronautical Data

2.4.1 Brief Description

This use case describes the process of deleting an existing aeronautical data record. The delete
refers to the physical deletion of the record.

2.4.2 Actors

There is only one actor for this use case:

Web Services User

2.4.3 Pre — conditions
User must have access privileges to AVN Web Services.

2.4.4 Basic Flow of Events

il

Noak

System receives a request for deletion of aesronautical data.

System interprets XML based request.

System invokes a service to the IFPA Enterprise requesting associated record(s) to the
requested record.

Web Service returns no associated record(s).

System validates and deletes aeronautical record.

If system Is unable to delete data, a standard response xml will be composed.

System returns response in an XML format.

2.4.5 Alternate Flows

1.
2.
3.
4.
5.

6.

System receives a request for deletion of an aeronautical record.

System interprets XML based request.

System invokes a service to the IFPA Enterprise requesting associated record(s) to the
requested record.

IFPA Enterprise returns a list of associated record(s) and their respective owner(s) that
are [inked to the record.

Systemn does not allow the deletion of the record and composes a list of associated
record(s) and their respective owner(s).

System returns a negative response and the list of associated records in an XML format.

2.4.6 Sub —flows

There are no sub-flows for this use case.

2.4.7 Key Scenarios

There are no key scenarios for this use case.

2.4.8 Post — conditions

1.

The selected aeronautical record will be deleted from the system.

2. The deleted aeronautical record will not be searchable in the system.

2.4.9 Extension Points
There are no extension points for this use case.

AIRNAV —-Web Services Use Cases and Business Rules 10 of 11

E‘

Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0) ' FAA - ATO

2410 Special Requirements

The requesting web service should have the ability to indicate if a returning list associated
records is needed.

2.4.11 Additional Information

There is no additional information for this use case.

2412 Business Rules
This function will be used for all requests to delete aesronautical data.

AIRNAV —Weh Services Use Cases and Business Rules

11 of 11

AIRNAY Web Services

1.0 Airport / Runway / Lighting Services
1.1 Airport / Runway / Lighting Query Summary

Needed for application pre-selection

1.2 Airport / Runway / Lighting Query Detail
Full information return

1.3 Airport / Runway / Lighting Add
Needed for applications to add aeronautical data into ATRNAV

1.4 Airport / Runway / Lighting Update
Needed for apphcations to edit aeronautical data in ATRNAV

1.5 Airport / Runway / Lighting Delete
Needed for applications to delete aeronautical data in AIRNAV

2.0 Navaid and Component Services

2.1 Navaid & Component Query Summary
Needed for application pre-selection. 1

2.2 Navaid & Component Query Detail

Full information return

2.3 Navaid & Component Add
Needed for applications to add aeronautical data into ATRNAV

2.4 Navaid & Component Update
Needed for applications to edit aeronautical data into AIRNAV

2.5 Navaid & Component Delete
Needed for applications to delete aeronautical data in ATRNAV

3.0 Expanded Service Volume Services
ESV services will have to be implemented in both AIRNAYV and the ESVMS system.

3.1 ESV Query
Needed to query the ESVMS system

3.2 ESV Add
Needed to add ESV request in the ESVMS system

3.3 ESV Update
Needed to edit an ESV from IFPA

3.4 ESV Delete
Needed to delete an ESV from IFPA

4.0 Obstacle Services

Obstacle data will be maintained in AIRNAV until the Obstacle Repository System
(ORS) is implemented with flight procedure development capability.

4.1 Obstacle Query
Full information return

4.2 Obstacle Add
Needed for applications to add aeronautical data into ATRNAV

4.3 Obstacle Update
Needed for applications to edit aeronautical data into ATRNAV

4.4 Obstacle Delete
Needed for applications to delete aecronautical data from ATRNAV

5.0 Information Services

5.1 SIAP Query

Execute request for STAP procedures that use Airport / Runway / or Navaid records. This
service is needed for data products and for determining if an ATRNAYV record can be
updated or deleted.

5.2 FIX Query

Execute request for FIX’s that use Airport / Runway / or Navaid records. This service is
needed for data products and for determining if an ATRNAYV record can be updated or
deleted.

5.3 MSA Query

Execute request for FIX’s that use Airport / Runway / or Navaid records. This service is
needed for data products and for determining if an ATRNAV record can be updated or
deleted.

5. Navaid Downgrade Trigger

Execute request for affected Active procedures, fixes, etc when a navaid system or
component is cancelled from a system.

ATO-A information Technology

Technical Services Group

Airport Navigation Aid Database Application
2.0
(AIRNAYV 2.0)

AVN Web Services

Interface Control Document

AIRNAV ~ Interface Control Document 1of77

i

Airport Navigation Aid Database Appilication 2.0 (AIRNAV 2.0) . FAA - ATO

Revision History

te cr N
1 VO0RO1 12/04/2007 | Drafi Version of the Document Frances K. Hubbard

AIRNAYV — Interface Control Document 20F77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} FAA - ATO

Table of Content

T INTOOUCHON weveeiivnerieeetreteer it ereerennessrsrsbes e s eerantressasasaar b e ns s s s ne s rss b bbanse bbb e e sranarasanrenasssaneanst 4
1.1 Abbreviations SN0 ACTONYINIS ..vcviiiiiearreriresse s resrrrsssesesantssssssesssssssssnessssrasassrasesnsisss 4
1.2 [OENHIICAOM covceeeeceeerieiirertrereessbaneseseessseerereressssurtsss s s s s ar s s rnres s rssas s st asanserranesessnnrasassannsararbess 4
1.3 INTENOE AUGIBIIGE ..ueiveeirrrrererrrenamseastessertesnesestessstssssarssssssramearenesstessteserassssarssonssssesseasacss 4
1.4 DOCUMENE SCOPE ..uecveeeeririreerrereesremaesicissssssni e s arns e s e s et assss s sbbaut s bascasbss e s b er s e s e e arnes 4
1.5 Interface Version PACKAQEcieeeriireeereertirerreeieesssassirrrressssnnrsrssesssaseseeissserasearassnsesrassnns 4

2 DOCUMIBIES ieetiievrerreeerrrrneseieneesrrsses et e bereniibss sisntsassss e et s s b bt e e e s sr s ran s s ms S eearbtsaessasnsasssratanssasassns 4
2.1 Governing Source DOCUMENIS ...t s s s st eestt s st s st ses e e 4
2.2 Reference DOCUMENES ...coocevveererreeseciier it cs it s srnss s e s st sbbaas st anassts s ensbsarbaea b esnsorts 4

B OVEBIVIEW ceietieiieirieeissttrerasesssteaserrrreresss e et s aessne s et b et sa s s s bs s R e T ae A AT Hnbaabbbbsaabbbasanababeesssastasnsnniasn 4
3.1 Design OBJEGHVES oottt s s s s st es s e et e 4
3.2 Web Services OPeralions ... it as s st s st e 4
3.3 Web Services Definition MOGel ...ttt snns s s s 4
34 508D MOUEI..erreeree ittt sttt et s s s b e b s en st s s et as s 4
3.0 ABCIITIENIS cvireeceit e e ciitreeeecrrte e s e s se e s s srmnesr s bbb b s s s A s R e R b e s e e e b e e e s s n e et b aa s e e 4
3.8 COMPIESSION Lorectimieiiiiniiisre et inr et s s et e e s s sbs st b e b s ar e st e s b d e r s s e s b e b S b s s s e a b nas 4
BT SBOUNEY «eveeceeiieeeet et eestiesreasste st e e e rereesre e abasbs s et s s b b s aAs s e R e e b S e n e e s e e e bbb e s s b 4

4 MESSAGE DEBSIGN cirerreirreerierierrresaerseeseeesseeserssbrei st s b bss s s bsa s bt ranaa bt sae e s sr s e s g s an e e st eb s s e st s 4
41 Web Service INterface VETSION v eeeiiernrinsirsrrer s s s tbs ettt esennarassssban s rrncass 4
. 1o 1= o1 - SO OO U U OO UROUTOUP I UUPPVURSP PP PR PSPPSR 4
4,21 ODJECt REIBIEMGE. ...cccirereeerernrrreeseses sttt e s s as e s s s e e st e e ms s s s e se st e ar s b rer nrete 4
4.3 Object Filters, Detail and ASs0CIatioNS ... s 4
4.4 ODJECE MOTEN coviveeeiceeireerrere et riie e tsn s e b s s ns ra e a e p e et s S et e es e s sm e cn e b s s s e e ne e 4
4.5 MESSAGR PELBITI ..ocvvereeeree s e sttt ss st srea s s e s s ns s sse b s s s et s e s an s s s e e n s m e s e s nnnnias 4

R 11 7=" = SO U U U U T U U U U U OO FUUUUUT TP PP UUUPUPPPUSRIPPPPPP 4
5.9 PTOPBMY TMBIMIES «eververseeerreesciesisioss s ssiiasaaeesssasasse s s r s aa s st artsbssss bbb bt s s st s a et s e s e s s st ns 4
5.2 Property References ([FILTER]) .ot s ran s s enns 4
3 Pl Bl e eieeieevesenrrererreseeesieseesbasaesbasssbasensaaanrbanaessss s rannantassso bbb as b bt e aeesavaaa e e rnenee s rrrnanan s s sns 4
O = o] o] =t O U OO EOUTPUUPIUP PSPPI TSP TP SIS IPRS ST 4

B GetFealure OPETalion ... ittt 4
5.1 PUIPOSE 11vevveeresreeemmisieeisstamitsstsiss st sssb st e ss e s e e ras s ed e e s bas e b e st a e e s e s b e br s e e am e s Ea T em s s s eem bbbt asbnab s 4
5.2 DIBEIEN wvvevneerreeeeeeeteresseesrraseasssasssassnssanssarermesreearessabetsssbeb s tobssn s e b s Sne s s snner e s sascamt e e Se b ss s e a L e b 4
Lo 0o T a1 =" o U SO OO OO O RO SR ROUY PP PPII SIS 4
6.4 GetFeature Request Message (OGC WFS 8.0) ..ot 4
B USEE 1eiieicvieeeraneescricrits e tr it e s e sm e st s b s d s b s R e SR e R ks E e e e s R e RSt be e n e bR 4
B8 EXAITIPIES 1. v ecveteetienie st et ecme e cetm b st a s s s s as et assm e e bs s be s b e s s e sa s s em b bt 4o b Lot s bbb e s et 4

7 GetGMLODJEEE OPEIBHON .ottt s bbbt bt bbb e b st 4
A B T o L= < OO OO PO OO U RO UUEUUUUPP PSPPSR IO R PTSTRR SR 4
T2 DIEEIDI t1ureureieerrrrerrrres sttt e tab e rab s e s ba e ah b s e s ar e e T r e e A RS SR h e e et e E e E b e e hs s bes 4
T3 OB cevvevisivrreese et e eeecittaseeisbtsaasaseasnss s e ntaaerrnnncreee s bbb e e i s ses s s R e R e s e st s s e e r ety s i s gt ta s b e aan 4
T8l USAGIE ovieeerrreerreeetaeesimtnssscrsesesssssarrsessesasessanssssnsssanntetissses s s e s basser s b en s raasasnseaanesonaneeninesiistsnisens 4
EA R = [n 1] 0] L= TN EO U O AU OT OV OU PSSP TIPS PP 4

L ©1=1 (8 o] [=Tw ll @]o]=] r=L o] s HOUTO RO O R U PSP OSSO PP OTP PRSP 4
BT PUIMPOBE ceeiteeieteeseere s et et cutenssae s b s s reses b m s bt ebeee et b e b e bbb s s e b s b d bbb s s 4
B2 DIBBIGN 1rovreetmeeeeieeteeeeeee e st s sttt n b e e r s n et a e n e e b e s e s e 4
B3 UBAOE cevveeeiireeriietterstsaristeseesben s st see s emsesateame boe bbb s st s e eh b eI e aR e e bbb ST e re bR 4
B4 EXAIMPIBS 1o eeecieiiieitiiiiirt it ce et st b e bbb bbb 4

O PUtFEatlre OREration ... ettt s e ettt b e e s 4
L B VT 4o 1= OO T O OO PP PRPT PO RTT 4
8T I =1 o o OO U OO U PO U USRIV UUPPPP ISR PSP PP RRO 4
2T T 1 1= T (=3O U OO OOV C VNP UI P TOPRO PSPPSR PR 4

10 PUtOBJECE OPEIAHiON. oo ettt e s s 4
10.1 P LT DOSE v e vreremreaereeereont s st e e bt sbatara st s s e ab b st s sa T om e b e b S n e e me S S e LSRR e e b e s e 4
10.2 B LT 1o o U U OSSO UTPOUEE VOO UTOY PV DIPTSR SISV 4

AIRNAYV — Interface Conirol Document 3of77

(3 {

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO
10.3 7= a =Y U OO UUO SO PP SRR PSSR PRRPRISSOT PR 4
11 GetConfigData OPEration ... s 4
11.1 o0 o 1o TSSO OO UI U O ERRO U PPIIUTOTURSPTPITTI P PRIIT ST SPS T 4
i1.2 COMEERE v v veeeevesesesreeeebasisssssssassssesseansssessssessn rnnesssssntbbesibbessssssontssasssntsarrrrnarssranstesssassensans 4
1.3 (723 T |3 TR OO OO T U O T PO OP SRS EP TSRO P PR BTN 4
12 AIXIM-5 SCHEMEA UBBOB. .o eveeieeiiiiircriee e rissimeassnssssnrsbssnesssssssesssnssrasnsssessareaesstsessnressssssnss 4
12.1 Natural Keys in ALXM-8 XINKS ..ot 4
12,2 AIXIM TYDES woeerrieeerrerereerecceii s iai s sr s s s b s e ren e et t st s eb e s b e et et ne st 4
12.3 IEEEIDIALE «.eeivieeererreerrrereiietreeesi s e saeareeesreasssvrnnsssasasnrtbeebbadsss s snressansst enarbeasnsnnnnssaassobberans 4
124 GML TYPES weorieirrercrreecriresi st ittt assn e bsbe s sa s e s s s s n s e s cot st e st s et st et ba bbb be st s ra s s s e asbastan 4
12.5 NOWES OBJBCL..eiioiiiccrriecteitet ittt srmr s e e st b s ras e s s b e ab e sas s e n e s et aess 4

AIRNAV ~ Interface Control Document 4of77

Airport Navigation Aid Databaée Application 2.0 (AIRNAV 2.0} FAA - ATO

1 Introduction

This document fully describes the functionality of Maintain Web Services within the AIRNAV
2.0 system. These requirements are captured in the AVN ISM Use Case format. It details the
needs the system must address fo capture and provide data related to AIRNAV 2.0 system.

1.1 Abbreviations and Acronyms

Refer to the document AIRNAV - Glossary for abbreviations, acronyms and other general
terminology used in the AIRNAV documentation.

1.2 ldentification

This is the Interface Control Document (ICD) for the AVN Web Services (AVN-
WS). It is a technical software interface document that specifies a set of web services,
and the usage of these web services

An AVN-WS interface version package comprises of this ICD, the Web Services
Definition Language (WSDL) file and the XML Schema Definition (XSD) files that
tmplement the interface. Information and downloads can be found at the following
web site:

hitp://www.aixm.aerp/public/subsite homepage/homepage.html

The purpose of this document is to:

s Provide a complete definition of the web services interface and the XML schema
files used for interaction between any client and the FAA Enterprise.

» Explain how the web services are intended to be used in practice, on both sides of
the interface.

s Provide a definition of the web services that will be used for interaction between
the AirNav Application and an outside data consumer / provider.

1.3 Intended Audience

This document is written for a technical audience, and assumes familiarity with web
services related concepts and standards:

e FAA AVN Information Technelogy Team - use this document to design and
implement the required web services in the FAA AVN Enterprise

e Contractor AirNav Systems and Software Engineers — use this document to
design and implement the AirNav Application interfaces.

AIRNAYV - Interface Conirol Document 5of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO

1.4 Document Scope

This document describes all the web services that are used by the AirNav Application.

It defines:

v' Web service operations in terms of their request, response and fault messages
v' Web services standards used for the transport and encoding of messages

1.5 Interface Version Package
An AVN-WS Interface Version package is defined as a zipped package, named
AVN_WebService_ M_N.zip, of the set of artifacts listed in Table 1.5, each of which are
themselves individually versioned. The version confrol over the interface schema files is
maintained by the FAA.
Table 1.5 Interface Version Package
File Description

AVN Web Services Interface Control
Document

This document.

DataAccessService M_N.wsdl

WSDL file. The top-level code description of the interface that
identifies the web service Operations and the Messages they
support

DataAccessServiceMessages M_N.xsd

XML Schema file. Defines the XML Schema for the request,
response and fault messages for each of the web service
Operations. This file is referenced from the WSDL.

ATXM-5 Payload Data

XML Schema file, Defines the object/data structures for the
AFXM-5 data to be transferred. These files are referenced from
the Message schema file. Higher-level xsd files may include
lower-level .xsd files that define third party base types (e.g.,
GML .xsd files) and common types.

TBD: FAA_extension_xxx.xsd

FAA Extensions to AIXM-5

AIXM-Feature.xsd

Core aeronautical data model supporting international air
navigation

AIXM-DataTypes.xsd

Common set of data types and values domains used for
aeronantical data

ATXM-AbstractGML-Object Types.xsd

Base type for ATXM object and feature types

profile/gmldaixm.xsd

GML Subset schema for AIXM

xlink/xlinks.xsd

GML 3.0 candidate xlinks schema

Object Payload Data

TBD

XML Schema file. Defines the object/data structures for the
object data to be transferred, These files are referenced from
the Message schema file. There may be different schema files
for different object types (e.p., ESV, Agreements, efc).

AIRNAV — Interface Control Document

6 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

[‘,

2 Documents

2.1 Governing Source Documents

The following documents are referenced as governing source documents within this
particular document. Governing Source documents serve to establish the interface

FAA - ATO

baseline.
Table 2.1.1 Governing Source Documents
Reference | Document # Organization Title
#
AIXM-5 | ALXM-5 Release Candidaie [(RC!) | Burocontrol UML and XSD Schemas Files
TBD: AIXM-5 Release Candidate
2(RC2) will be released in mid-
2007. The ICD wiil be baselined to
RC2.
AINM-3- | See Section 1.6 FAA XSD Schemas Files
Fdd
FAA-SDS | None provided, FAA ATO Sensitive Data Security
AVN-313A Administration for AVN, Version
Data 1.2 (decument markings indicate
Management Version 1.1, December 14, 2003).
Team

SOAP World Wide
httpr/iwww. w3, org/TR/soapl2- Web SOAP Version 1.2, W3C
part1/ Consortium Recommendation 24 June 2003,

{W3C)

WS-I bittp:/fwww . ws- Web Services ‘WS-I Basic Profile Version 1.0,
i.org/Profiles/BasicProfile-1.02004- | Interoperability | Final Material, 2004-04-16
04-16.html Organization

WSDL | httpr/iwww. w3.org/TR/2001/NOTE | World Wide Web Services Description
-wsdl-20010315 Web Language 1.1, W3C Note 15 March
Consortium 2001.
(W3C)

X5D hitp:/fwww.w3.org/TR/xmlschema- | World Wide

v/ Web
Consortium XML Schema 1.0, W3C
(W3O Recommendation 28 October 2004,

AIRNAYV - Interface Conirol Document

7of77

Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0)

['. ._:

FAA - ATO

2.2 Reference Documents

Reference documents provide background and/or supplementary information to the
contents of this document.

Table 2.2.1 Reference Docaments

Reference

Organization Title Notes
ATXM-3-
MGRD Eurccontrol ~ ATXM 5 Exchange Model Goals, Defines objectives, framework and key design
Requirements and Design. 2006/06/22 decisions for AIXM 3.
CON'V_S_ Eurocontrol ~ Data Modeling Conventions for AIXM 3. Defines UML conventions.
2006/06/22
GML./ ISO Geography Markup Language (GML). GML referenced by AIXM 5 specification.
ISO/TC Version 3.1.0. 2004-Feb-7.
211/WG
4/PT 19136 Note: ATXM-5 references the GML 3.1.1 schema.
0GC
GML RWG
WES/OGC
04-094 Open Web Feature Service Implementation Defines interfaces for data access and
Geospatial Specification, Version: 1.1.0. Date: 2005 manipulation operations on geographic features
Consortivm May-3 using HTTP as the distributed computing
Inc platform. Via these interfaces, a web user or
service can combine, use and manage geodata.
WFS/0GC
06-027r1 Open Corrigendum for the OpenGIS Web Feature
Geospatial Service (WFS) Implementation
Consortium Specification.
Inc.
Filter / OGC . . . Describes an XML encoding of the OGC
04-095 Open OpenGIS Filter Encoding Implementation Common Catalog Query Language (CQL)
Geospatial Specification. Version: 1.1.0. Date: 2005 as a system neutral representation of a
Consortium May-3 query predicate.
Inc
3 Overview

This section establishes the context for understanding the interface design by describing
the web service model, operations and standards upon which the solution is based.

3.1 Design Objectives

1.

Support the IFPA Application Operator’s data access needs

Data access needs of IFPA application (SIAP, FIX, IPDS, etc) are extensive and
must be met by Airnav 2.0. A flight procedure work area could include up to 200
nautical miles of aeronautical data.

AIRNAV — Interface Conitrol Document

Bof77

Airport Navigation Aid Database Application 2.0 {AIRNAV 2.0) FAA - ATO

This includes the following activities against a Data Source (Data Server):
* Discovery: browsing, filtering, and searching data;
» Access: retrieving data to populate a flight procedure development work
area, refreshing a work area, or submitting new or changed data from a
work area back to the Data Source.
2. Achieve interactive response times for IFPA Application Operator’s
discovery activities
Response time is a function of
» Network infrastructure capacity: network latency, network bandwidth;
» Data Source server capacity and performance;
* Application client software performance and Data Source software
performance;
* Nature of the web services interface design.
The first three factors are outside the scope of this document, but clearly have
substantial bearing on the performance and what the Operator experiences.
The web services interface is designed to be lightweight and also to allow service
performance to be tuned to some extent by providing request parameters that
control the amount of server effort required (whether queries need to be
performed for associated abjects) and the level of detail (data volume) returned.

3. Give the Application Operator visibility and control over large data volumes

For large data volumes, the Operator may need to wait for data to be transferred
between a Data Source and the Application. This web service interface
design permits selective data transfer through the following mechanisms:
* GetGmIObject operation to enable retrieval of specific objects
* Separate Get/Post from/to URL for retrieval and submission of file
attachments (document, screen capture image, etc.)
» Filter parameters on Get operations to reduce the number of objects
found and returned.
* Control over the level of detail returned for an object in a Get operation,

4. Achieve graceful degradation of service under heavy service loads

If a server 1s inundated with requests that exceed its resources to fulfill, service
must not be completely lost, rather requests should be fulfilled, albeit delayed.
The interface needs to be designed to degrade gracefully when loads are heavy.

5. Leverage existing standards, technology and tools appropriately
Existing open standards are used wherever possible to avoid “re-inventing the
wheel”. Standards that are well supported by tools, prevalent in use, and have
good expected longevity are preferred.

6. Establish well-defined, controlled interfaces
The design accomplishes this through

AIRNAV - Interface Control Document 90of77

. ;
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* Defining a web service interface version, with version controlled
artifacts: WSDLs, XSDs.

* This ICD, which documents the content and intent of a particular web
service interface.

7. Minimize interface software changes due to changes in the transfer data
Model
General purpose operations should be designed so that new data (object types or
configuration data types) can be introduced without having to add new web

service operations. This reduces the effort required to change the interface and the
supporting software.

3.2 Web Services Operations

Web services connect distributed software applications over a network, typically by
passing data in eXtended Markup Language (XML} between clients and servers
using the HyperText Transport Protocol (II'TTP). IFPA Application web services
conform to the Simple Object Access Protocol (SOAP), which defines a framework
for XML messages in the web service request and response.

Table 3-2 provides an overview of each of the web service operations in terms of
what it does, and the technologies used to implement it.

The GetFeature and GetGmlObject services are implementations of the Open
Geospatial Consortium (OGC) Web Feature Service Implementation Specification
[WES] standard. This ICD tailors and constrains the [WFS] standard to support the
required service functionality.

AIRNAY ~ Interface Control Document 10 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0)

FAA - ATO

Table 3.2 Web Service Operations

Operation

Description

Implementation Technologies

1. GetGMLObject

Used to retrieve/refresh a set of aeronauntical
features from a Data Server using object
identifiers. Intended for retrieving a specific
aeronautical feature version or a set of
versions of a feature.

SOAP, conforming to WS-I Basic Profile,
over HTTP. Based on the OGC WES
Specification [WFS]. Aeronautical features
encoded in ATXM 5.

2. GetFeature Used to retrieve/refresh a set of aeronautical SOAP, conforming to WS-I Basic Profile,
features from a Data Server using a spatial, over HTTP. Based on the OGC WFS
temporal, and textual filter parameters. Specification [WFS] and OGC Filter
Intended for retrieving aeronautical features | Encoding Implementation Specification
in a geographical area — single or multiple [FILTER] Aeronautical features encoded in
versions. ADXM 5.

GetObject Used to retrieve/refresh a set of objects from | SOAP, conforming to WS-1 Basic Profile,
a Data Server using a spatial, temporal, and over HTTP. Based on the OGC Filter
textual filter parameters. Intended for Encoding Implementation Specification
retrieving non-aeronautical objects in a [FILTER]
geographical area or through other filier
constraints — single or multiple versions.

PutFeature Used to store aeronautical features back to a SOAP, conforming to WS-1 Basic Profile,
Data Server. Submits one ‘Transactable over HTTP. Aeronautical objects encoded in
Object Set’, a tightly coupled set of objects ATXM 5.
that are stored in one database transaction.

PutObject Used to store objects back to a Data Server. SOAP, conforming to WS-1 Basic Profile,
Intended for submitting non-aeronautical over HTTP,
objects. Submits one “Iransactable Object
Set’, a tightly coupled set of objects that are
stored in one database transaction,

GetAttachment Used to retrieve an attachment to an object Get from URL over HTTP.
from a Data Server. An attachment can be
any type of file, that has been associated to an
object,

PostAttachment Used to store an attachment to an objectto a | Post to URL over HTTP.

Data Server. An attachment can be any type
of file.
GetConfigData Used to provide new or updated SOAP, conforming to WS-1 Basic Profile,

configuration data.

over HTTP.

AIRNAYV — Interface Control Document

11 of 77

F [
{ !

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

3.3 Web Services Definition Model

All the Web Services are SOAP-based services follow the Web Services Definition
Language (WSDL) model. A WSDL artifact describes a web service as a set of one or
more SOAP-based Operations.

3.4 Soap Model

The SOAP message is embedded within an HTTP request or response. The SOAP
Message consists of an Envelope element and optionally, one or more attachments that
follow. The Envelope element has Header and Body elements. The SOAP Header serves
to guide the routing of SOAP messages, and is not of concern to this interface. The
SOAP Body contains the application payload, i.e., the input (request), output (response)
or fault message as declared in the WSDL for the operation.

3.5 Attachments

Attachments are files (of any type) that are associated to an Object. For example, an
airport may have many file attachments, such as surveys, letters, etc. As attachments may
be large files, they are handled using a handshake mechanism between the client
application and the FAA Enterprise. The two-stage process involves an initial transfer of
metadata describing the attachment to transfer, followed by a get from or a put to, a URL
specified by the Enterprise.

The necessary metadata includes the following attributes: mime-type, file name, file
creator, file size and last modified date. Optionally the metadata contains the referral
URL to get or put the data to or from. This URL need only be provided by the
Enterprise and not by the client application. A UID is provided when attachment
information is received from the Enterprise. For obvious reasons, this is not present
when new attachments are being created.

The handshake mechanism is orchestrated by the client application storing the data
within the Enterprise. The process assumes a decoupling of file storage to an external
file server and not within the database application itself. The UID of the file is stored in
the database application itself, and this UID are used to coordinate with the file storage
system for retrievals, updates and deletions. The orchestration is discussed in the three
foltowing use cases: Retrieve, Update and Create attachment.

TBD: The proposed file storage component for attachments in the Enterprise is Oracle
Files, a component of Oracle Collaboration Stite.

AIRNAY — Interface Control Document 12 0f 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) - FAA - ATO

3.5.1 Retrieve Attachment

1. Client application requests data using GetFeature or GetGmlObject web service
from FAA Enterprise.

2. For any attachments associated with the returned feature collection, the Enterprise
application coordinates using a UID for the attachment with the file storage

service for all metadata regarding that file as well as the referral URL to retrieve
the file from.

3. The GetFeature or GetGmlObject response message indicates attachments exist
for retrieved data complete with necessary metadata. The referral URL is present
in metadata. (For ATXM-5 features, the attachment metadata is implemented as a
Note object).

4. Client application retrieves attachments using HTTP GET from the referral URL
and uses the metadata to store locally.

3.5.2 Update Attachment
1. Client application updates a feature to Enterprise using PutFeature web service.

2. The client application submits data to PutObject web service including
Metadata for the updated attachment(s) associated with a feature. The PutObject
request indicates if the attachment is to be updated (replace the existing attachment
with the modified attachment) or amended (keep the existing attachment, and
create a new version of the attachment).

3. Enterprise application receives message. For each attachment listed, coordinates
with the file storage service using the UID for the attachment as well as all up to
date metadata. File storage service responds with up to date metadata plus referral
URL for all files that have changed and thus require a submit back to the enterprise
with the update.

4. Response XML to client includes full metadata for each attachment to be updated
only, including referral UURLs for data to be put to.

5. Client application sends data through HTTP POST to the referral URL.

3.5.3 Create New Attachment

1. Client application stores a feature to Enterprise using PutFeature web service

2. The client application submits data to PutObject web service including metadata
for the new attachment(s) associated with a feature.

AIRNAV — Interface Coniraof Document 13 0F 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

3. Enterprise application receives message. For each attachment listed that is not yet
present, coordinates with the file storage service by sending the metadata for the
file. File storage service creates a placeholder record for the file and return the
UID as well as all metadata for each file.

4. The PutObject response XML to client application includes full metadata for each
attachment to be updated, including referral URLs for data to be put to.

5. Client Application sends data through HTTP POST to the referral URL.

3.6 Compression

Payload data is transmitted through the interface as an XML Schema base64binary
blob. This blob may optionally be compressed by the data source. The data source
must specify what type of data the blob contains using a mime fype as well as if the
data is being transmitted in a compressed format within the binary or not. The
receiver of the data must then use the cues listed by the data source to decide if the
binary data must be uncompressed before use or not.

3.7 Security

3.7.1 Internal Web Services

FAA ATO Data Security Policy [FAA-SDS 6] requires that all external web
services interface into a security infrastructure and conform to WS-Security
specifications.

4 Message Design

This section describes the key design concepts found in the interface and the general
patterns followed by request, response and fault messages.

4.1 Web Service Interface Version

This web service interface is versioned to control the deployment and changes to
the interface. To evolve and advance the interface, a new interface version must be

created and deployed.
A client Application and the Data Source’s web service server communicate

using a specific version of the web service interface. When a new interface version
is introduced, both the client and server platforms must be able to accommedate the

AIRNAYV - Interface Control Document 14 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAY 2.0} FAA - ATO

change. For any significant change, this requires deploying new software releases
on both the client and server.

If multiple releases of the client application need to be supported at one time, then
the Data Source’s service must support multiple interface versions. This situation is
most likely to occur during transition periods where a new release of the client
application is being rolled out.

411 Interface Version Levels

An Interface Version is identified by a major version number (M) and a minor
version number (N), i.e.,, M.N, M/N,or M _N.

If an interface change is significant, disruptive, or not-backwardly compatible, then
it is a major revision to the interface, incrementing M. Most likely a major revision
to the interface will coincide with a major release of the IFPA Applications.

If an interface change is backwardly compatible with deployed client and server
software releases, then it should be considered a minor revision to the interface,
e.g., Release 1.1, 1.2, etc. Changes can be made to the WSDL or XML Schema files
already deployed in such a way as to not break the deployed client or server
software. For example, in a situation where expanding the definition of a XML
Schema enumeration to include another value does not affect any software.

The situation may occur where the Service Provider must support more than one
minor interface revision and have different logic for each. To easily support this
style of coding and to support software diagnosis, the Interface Version is included
as an element of the request, response and fault header blocks

4.1.2 Interface Version Package

A Web Service Interface Version is defined as a zipped package, named
AVN_WebService M_N.zip, of the set of artifacts listed in Table 1-2, each of which are
themselves individually versioned.

4.2 Objects

The payload data is conceptually organized into Objects. The key characteristics of an
object are as follows:

» Properties: every object contains a set of properties (also referred to as
attributes).

* ObjectType: identifies a group of objects that share the identical set of object
properties, e.g., the Workflow ObjectTypes are Request, Project and Task.

* ObjectID: uniquely distinguishes the physical entity represented by the object.

AIRNAY - Interface Conirol Document 15cf 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

The ObjectID is expected to be a value machine-generated by a Data
Source (referenced by a Namespace) so that the object can be uniquely
identified within the Data Source.

* ObjectVersion: as the properties of an object may vary over time or more than
one definition may exist simultaneously, the ObjectVersion is used to
define an instance of an object.

* ObjectName: as the ObjectID may be machine-generated and not humanly
recognizable, the ObjectName is used to capture the natural key or some
form of name.

* Namespace: uniquely identifies a Data Source, and possibly a context within
The Data Source, within which it can be certain that the ObjectID 1s
unique (in ATXM-5 this is referred to as the codespace).

The ATXM-5 model and its XML encoding is used to represent aeronautical and
mstrument procedure data. An object within ATXM-S5 is referred to as a Feature, a
Feature timeslice defines a specific instance of a Feature. The AIXM-5 object model
does not cover all the data concepts that are required. Hence the XML schema for some
ObjectTypes is defined independently of ATXM-5.

4.2.1 Object Reference

Object references are needed to implement associations between objects for the purpose
of:
* Browsing across related objects through an Application, e.g., runways,
instrument procedures and NAVAIDs related to an airport.

* Traversing object dependencies, e.g., so that all the object dependencies —
Fixes, Navaids, Obstacles, Runway, Airport — can be found and retrieved.

An object reference requires the following information:
1. Namespace
2. ObjectType
3. ObjectlD
4. ObjectVersion(s), if applicable
5. ObjectName

Object references are encoded as xlink statements. This is consistent with [WFS] and
AIXM-5, which use the xlink standard for feature associations.

4.2.1.1 Object References to AIXM-5 Features

In ATXM-5 the ObjectlD is represented by the aixm:identifier element, which uniquely
identifies a feature with an identifier and codespace attributes. The ObjectVersion is

AIRNAV — Interface Control Document 16 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} FAA - ATO

represented by the version element, which is an FAA extension to all ATXM-5 feature
timeslices.

If an Object has an ObjectID, represented by the aixm:identifier element, then
references to it using an Xlinks follows these rules:

1. The xlink href attribute complies with XPath 1.0 and reference an object
through its ObjectType, Namespace (aixm:identifier codespace attribute),
Objectid (aixm:identifier element), and ObjectVersion(s) (version element).

2. An xlink href attribute may reference one or more versions of an object. This
allows for temporal associations. For example, runway version 4 may be
associated to aerodrome versions 5, 6 and 7.

3. The xlink href attribute also includes an alternate “natural key’ (also an Xpath
reference) to the object. This allows object references to be resolved across
multiple data sources.

4. The xlink title attribute contains the ObjectName.

There will be cases where an Object has no ObjectID represented by the aixm:identifier
attribute. For example, an RVR is a feature in ATIXM-5, but is stored as part of a runway
object in the FAA Enterprise, and so does not have its own ObjectID (control number in
the FAA Enterprise). When an Object has no aixm:identifier, the features are associated
within the message payload through an xlink statement, following these rules:

1. The xlink href attribute complies with XPath 1.0 and reference a feature
instance in the XML document by its gml:id. (In ATXM-5, all features and feature
instances have a gml:id, which 1s of XML type ID, so is constrained to be unique
in the XML document within which it occurs).

For example, When a request is made for a runway object, the AVN WS will retumn an

AIXM-5 runway feature and an RVR feature. The RVR feature references its associated
Runway.

4.2.1.2 Object Reference

References to non-AIXM-35 features using an Xlink follows these rules:
1. The xlink href attribute complies with XPath 1.0 and reference an object
through its Namespace, ObjectType, Objectld {(control number), and
ObjectVersion(s). The atiributes will be dependent on the object type.

2. The xlink href attribute includes an alternate ‘natural key’ if applicable (also an
Xpath reference) to the object. This allows object references to be resolved across

AIRNAV — Interface Control Document 17 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

multiple data sources.

3. The xlink title attribute contains the ObjectName.

4.2.2 Object Directory

To support client application browsing of the data objects held by a Data Source (using
the GetObject operation), the Data Source must offer up some top-level groupings of
objects. The Object Directory corncept serves this purpose, aggregating a set of objects,
much like a file folder or directory. An Object Directory may contain other Object
Directories to form a hierarchy, much like a computer’s file system. This follows a
Representational State Transfer (REST) architecture model, wherein each response is
linked to more data - which may be retrieved by traversing the link. Each response
allows the client to drill down to get more detailed information.

Object Directories may only be retrieved, they cannot be stored via the PutObject
operation, Object Directories can be requested from a Data Source by setting the
ObjectType parameter to ‘ObjectDirectory’ in the GetObject operation

4.3 Object Filters, Detail and Associations
4.3.1 Filters

The GetFeature and GetObject operations enable data to be filtered on the server before
it is sent back to the client. Each operation has its own specific filter parameters, e.g.,
spatial location, date, etc. Filters are implemented in the request messages using the
OpenGIS Filter Encoding Implementation Specification [FILTER].

4.3.2 Detail

To ensure that client application browsing using the GetFeature, GetGmlObject and
GetObject operations are responsive, server-side processing time and data transfer
volumes need to be kept to a reasonable size. The amount of information returned is
controlled through parameters present in these operations.

4.3.2.1 GetFeature, GetGmlObject Detail

The level of detail returned by the GetFeature, and GetGmlObject services is controlled
by the <traversexlink> attribute. It 1s used to request either just the selected feature
type, or the selected and associated feature types.

AIRNAV — Interface Control Document 18 0Ff 77

i {

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) ' FAA - ATO

4.3.2.2 GetObject Detail

The ObjectDetail attribute is used to request either a Full or Summary description of each
object.
1. Full Description
Returns all the properties of the objects selected.
2. Summary Description
Retums only a few properties of the objects selected, for the purpose of display,
sufficient for the Operator to understand what the object is, plus enough to
support identification of object references and refresh.
In addition to the Object Reference properties, specified in Section 4.2.1, the
Summary may include the following kinds of properties, dependent on the object
type:

» Location: the geographic location or extent of the object.

» Production State: [Working, Pending, Active, History, Future]

» Last Modified Date/Time: date/time when the object was last updated.
« Effective Start Date: publication date, if applicable.

+ Effective End Date: publication date, if applicable object is History.

The Summary properties vary by ObjectType. For inherently “large” objects (e.g.,
attachments or geospatial reference data) the object metadata is included in the
Summary (including the size of the object) and the actual content is retrieved
when the Full object is requested.

For a GetObject operation, if the request asks for a Summary description, the server may
still return a Full deseription if it is unable to provide a Summary, or if in the
implementation of the server it is decided that the Full description is not large enough to
warrant a Summary description. The response message indicates whether the server is
returning the Full or the Summary description.

4.3.3 Associations

Associations are essential for browsing or traversing the network of objects that form
the aeronautical information space. However, there may be occasions where the client
application only wants the properties for a particular ObjectType and does not need to
know what other objects are associated.

AIRNAY — Interface Control Document 19 0fF 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} FAA - ATO

4.3.3.1 GetFeature, GetGmlIObject Associations

The inclusion of associated objects returned by the GetFeature, and GetGmlObject
services is controlied by the <traversexlink> attribute.

4.3.3.2 GetObject Detail

The level of detail returned by the GetObject service is determined by the
AssociatedObjects attribute, with the values True or False. When associated objects are
requested, only the Summary descriptions of the associated objects are returned, even if
the ObjectDetail parameter indicated Full (in that case the fll object details are returned

for the primary ObjectType requested, and summary object details are returned for the
associated objects).

4.4 Object Model

The Object Model is partitioned into Subject Areas, as described in Table 4.4.1.

Table 4.4.1 Object Model Subject Areas

. L. Applicable Web . .
Subject Area | Description Service Operations Specification
Acronautical | Approach, departure and arrival procedures, GetGmlObject AIXM 5
Information airspace constructs, pround facilities, obstacles, GetFeature PutFeature

temporary flight restrictions (e.g., NOTAMs), GetObject PutObject
Geospatial Information used to visually assist Operator: GetObject Map/image metadata
Reference aeronautical charts, airport layout plans, ground needs to be captured
Information maps, imagery, radar tracks, etc. within an ObjectType.

Data may be transferred
in any mumber of
Jormats.

System System specific configuration data, e.g., available GetConfigData TED

fix names list, code lists, country codes, user PutConfigData

account configuration, etc.

AIRNAV — Interface Conirol Document

20 0f 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

4.4.1 Aeronautical Information

4.4.1.1 Overview

The ATXM-5 XML schema encoding 1s used to exchange aeronautical information data.
The ATXM model focus is on the feature properties and relationships that directly
support aircraft navigation in the air and on the ground and thus have relevance to
pilots, aircraft and air traffic control. The concepts and design of ATXM summarized in
this document, are fully described in AIXM 5 Exchange Model Goals, Requirements
and Design [AIXM-5-MGRD], and Data Modeling Conventions for AIXM 5 [AIXM-5-
CONV] documents.

The AIXM model is organized around features, and is derived from the OpenGeospatial
GML standard. Feature properties can change over time (e.g., a navigation aid, which
can have a frequency change). The ATXM conceptual schema is presented in UML, and
is implemented in an XML schema, The web service payload is specified through the
feature collections exchanged in a GetFeature, GetGMLObjects or PutFeature operation
message.

The UML model is composed of classes, relationships (association or aggregation) and
properties. An abstract class is shown by an italicized class name. The classes that inherit
from the abstract class have a triangle symbol on the association line to the abstract
{base) class. Properties describe and characterize the feature/object (e.g., a runway has a
property indicating the runway width). Classes are related through association or
aggregation. An aggregation implies ownership and coincident lifetime of the parts by the
whole.

AIXM includes an extension model that allows AIXM XML documents to contain
additional properties that might be specific to a system interface specification or other
use case. Extensions allow for additional AIXM Feature and Object properties, and
relationships through a standard approach for implementing and documenting
extensions.

The FAA has created an extension model for ATXM 5, referred to in this document as
the AIXM-5 FAA Profile. This is the model used for the GetGmlObject, GetFeature and
PutFeature aeronautical information payload.

The AIXM 5 FAA Profile incorporates extensions originating from:
1. The IPDS Application, captured in the Aeronautical Information Requirements
Specification {TPDS-AIRS]. These are extensions for criteria properties, and the

minimum set of supplementary properties that IPDS requires to support
instrument procedure construction and evaluation.

AIRNAV — Interface Controil Document ' 21 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

2. The FAA Enterprise, for the purpose of supporting the flight procedures group
and other downstream consumers.

4.4.1.2 Object Versions

Temporality in ATXM data exchange is implemented through a TimeSlice data content
model that is defined as part of GML. A TimeSlice encapsulates the time varying
properties of a dynamic feature.

The ATXM TimeSlice UML model is illustrated in Figure 4-3. As shown in the model,
all ATXM Features derived from a Feature base class that has a static component that
contains properties for an artificial identifier. All other properties of the feature are
assumed to be temporal. The temporal feature properties are encapsulated into an
ATXMTimeSlice object. Each ATXMTimeSlice object contains a valid time interval and
an interpretation property. The interpretation property indicates the temporal component
that is being modeled. Valid values for the interpretation are:

* Baseline — The state of a feature and all of the feature properties as a result of a
permanent change. The Baseline state of a feature also exists when the feature is
initialty created. The baseline state lasts until the next permanent change.

* Version — The state of a feature and all the feature properties during the time
period between two changes.

* Permanent Delta — A set of properties that have changed or will change
permanently. The permanent delta will result in a new baseline.

» Temporary Delta — A set of properties that are effective for a limited time. The
result is a temporary change to an underlying feature version.

The IFPA web services use Version time slices only. This simplifies the interface and
processing of ATXM messages. For example, if there are four versions of the KPHL
aerodrome object (one Active, one Pending, and two Working), a request for all Active,
Pending, Working KPHL aerodrome objects, would return four AIXMTimeSlice
objects, one for each version. Each ATXMTimeSlice object having all the attributes of
the KPHL aerodrome for that version.

4.4.1.3 Object Types

Table 4.4.1.3 lists the Aeronautical Information object types that are supported by the
GetGmlObject, GetFeature, GetObject, PutFeature, and PutObject services. A ‘{1’
indicates that the object type is supported by a service from Airnav.

AIRNAV - Interface Control Document 22 0f 77

|

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

Table 4.4.1.3 Aeronautical Information Object Types Supported for This Interface
Version

Object Type GetGmlObject GetFeature GeiObject PutFeature PutObject
v v ' v "

Aerodrome/ N/A N/A

Helipaort

Runway v v N/A v N/A

Communication v v N/A Madule 2 N/A

Service

Navaid v v N/A v N/A
v v N/A N/A N/A

Fix

MSA/ESA v v N/A N/A N/A

Holding Pattern v v N/A N/A N/A

Obstacle v v N/A N/A N/A

Approach v v N/A N/A N/A

Procedure

ESV v v N/A v N/A

The AVN-WS allows Attachments to be associated with any AIXM-5 feature.

4.4.1.4 AIXM-5 Payload Schema

The AIXM-5 schema is implemented in XML schemas that define the XML schemas
for each of the feature coilections to be transferred.

Each feature has common static properties, and an array of time slices. Each time slice
has a time interval, interpretation and property group — the property values in effect at
the time slice interval. Associations between features are achieved through xlinks.

4.4.1.5 Schema Files

The AIXM-5 schema files include the AIXM-5 .xsd files, FAA extensions to the
ATXM-5 schema and included or imported .xsd files that define third party base types
(e.g., GML .xsd files} and common types.

AIRNAV - Interface Control Document 23 of 77

{ : i |
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

4.4.2 System
4.4.2.1 Overview

System-specific configuration data, e.g., country codes, etc. Configuration data is
organized into ‘configuration sets’.

4.4.2.2 Configuration Sets

Code Lists will be supported by the GetConfigData and PutConfigData services.

Code Lists are lists, that have code types and names. For example, country code list has
list of 2-character codes and full country name. The code lists required depends on set
of properties being provided for aeronautical information features.

Code List Values

Country Code 2-character country code
Full country name
Host Country or Territory

Aerodrome Code Aerodrome ID code
ICAQ code
Full aerodrome name

4.4.2.3 Object Schema
TBD: Configuration Set schema model, to be provided by FAA.

4.5 Message Pattern

Every message has a header, however, it is slightly different based on whether it is a
request or response. All operations include the Request Summary and Response
Summary. Data is transferred via the Object Set or as an Attachment.

4.5.1 Request

A request message consists of the following:
* Request Header — mandatory
* Request Summary — optional
= Object Set — only used for Put operations

AIRNAV — Interface Control Document ' 24 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

4.5.1.1 Request Header

Purpose

The Request Header serves to uniquely identify the request, its sender, and to establish
the correct XML Schema for its interpretation, i.e., the InterfaceVersion.

Content

The Request Header is standard across all requests and contains the following
mandatory elements:

* InterfaceVersion: identifies the major and minor (M.N) web services interface
version.

* UserAgent: identifies client machine and application software from which the
request originated.

* UserID: User’s unique ID within the realm of the Data Source.

* SessionToken: an obfiiscated or encrypted string provided by Data Source on
initialization of connection. This element is optional for the ServerStatus
operation, enabling the client application to determine whether or not connectivity
with the Data Source exists (typically while configuring) prior to obtaining a
SessionToken. The ValidateUser operation generates the SessionToken, hence it
is not an input. All other operations require the SessionToken.

* RequestID: identifier provided by the client application that serves to uniquely
identify a service request.

Usage

The client application builds the Request Header, supplying the SessionToken obtained
from the Data Source, if required.

The server verifies that the SessionToken is valid, and will not satisfy the request if
invalid, instead a Fault Message is returned. A valid SessionToken may expire after a
pre-determined period of time, at the discretion of the Data Source.

Example

* InterfaceVersion: 2.1 _

» UserAgent: NFPG21 Windows XP 1.0.3 TARGETS 1.3
* UserlD: Glenn

* SessionToken: |@#3%"&*()

* RequestID: 324

AIRNAYV - Interface Control Document 250f 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

4.5.2 Response

A response message consists of the following:
* Response Header — mandatory
* Response Summary — optional
* Object Set — optional

4.5.2.1 Response Header

Purpose

The Response Header serves to uniquely identify the Response, linking it to the original
Request.

Content
The Response Header is standard across all responses and contains the following
mandatory elements:
* InterfaceVersion: identifies the major and minor (M.N) web services interface
version.
* UserAgent: identifies client machine and application software from which the
request originated.
* UserID: User’s unique ID within the realm of the Data Source.
* RequestID: identifier provided by the client application that serves to uniquely
identify a service request.

* Server: identifies server machine and server-side software that generated the
Tesponse.

Usage
The server application builds the Response Header, largely by echoing back the
elements of the Request Header.

Example

* InterfaceVersion: 2.1

* UserAgent: NFPG21 Windows XP 1.0.3 Targets 1.3
* UserID: Glenn

* RequestID: 324

= Server: avnokeprd.ame.faa.gov Hub 2.1

AIRNAV - Interface Control Document 26 of 77

i

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO

4.5.3 Fault

A fault message consists of the following:
* Fault Description — mandatory

The WS-I Basic Profile specifies a standard Fault response as follows:
* FaultCode: indicates one of the standard SOAP fault codes [SOAP). In fact, it
appears that this code would always be set to “Sender”.
» FaultString: human-readable indication of the fault.
 FaultActor: indicates who caused the fault.
* Detail: contains custom Fault message.

4.5.3.1 Fault Description

The fault description element contains one top level element, ServiceException, that
has been declared under the [http://avn.ato.faa. gov/ws/faults/] namespace. This element
contains detailed information on the exception as well as the route talken through the
Enterprise that caused this exception to be raised.

Table 4.5.3.1 ServiceException Element

ServiceException

Attributes Required? Type Description

No Anributes

Elements Min | Max | Type Description

ExceptionInformation 1 I ExceptionnformationType Information on the
exception that has
occurred.

ServiceRouteInformation | 1 1 ServiceRouteInformationType | Information reparding the
call stack through the
service layers.

ExceptionInformationType

Attributes Required? Type Description

Type Yes ExceptionTypeType The type of exception that
has occurred.

Severity Yes ExceptionSeverity Type The severily of the
gxception.

AIRNAV - Interface Control Document

27 of 77

{,.,,

Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0}

FAA - ATO

Timestamp

Yes

UTC Time

The time of the exception.

D

String data

A uniquely identifiable ID,
created by the source of the
exception, for correlating
the client side with the
server side exception at a
later date.

Elements

Min | Max

Type

Description

Summary

String data

The summary description
of the exception, Human
readable. The target is the
end user of the system,

Description

String data

A human readable
description of the
exception. Gives details as
to the cause of the
exception and possible
recourse. The target is the
end user of the system..

Log

String data

The machine log raised by
the source of the exception.
Not for end user
consumption.

ServiceRouteInformationType

Attributes

Required?

Type

Description

No Atiributes

Elements

Min | Max

Type

Description

ServiceLayer

3 inf

ServiceLayerType

One for each particular
point along which the web
service call may be traced.

ServiceLayerType

Attributes

Required?

Type

Description

ServiceName

Yes

String data

Web Services service name
being called. Directly from
the WSDL document.

OperationName

Yes

String data

Weh Services operation
name being called.
Directly from the WSDL
document.

InterfaceVersion

Yes

String data

The version of the interface
currently in use.

isFaultInstigator

Yes

Boolean Defauit Value:
FALSE

Set to true if the current
ServiceLayer raised the
exception originally.

AIRNAV - Interface Control Document

28 of 77

P f"

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

MachineName No String data The name of the machine
that raised exception
occurred on,

MachineAddress No String data The address of the machine
that raised the exception.

ServiceAdminContact No String data The administration contact
for the machine that raised
the exception.

Elements Min | Max | Type Description

RequestMessage I 1 String data ‘The original Request
Message to the Operation
being called at this service
layer.

4.5.3.2 Fault Exception Types

The general exception types, which are commeon to all services, are listed in the Table
4-10 below complete with description and possible recourse.

‘Table 4.5.3.2 Exception Types

Enumeration Description Recourse

APPLICATION_EXCEPTION An exception has occurred in the Notify help desk.
application.

DATA_SOURCE_UNAVAILABLE The data source has timed out or is Retry request after a
otherwise unavailable. delay.

DATA_STALE The data being acted upon is stale and | Refresh data and

thus must be refreshed.

Tepeat operation.

DATA_UNAVAILABLE

The data being acted upon is Notify user of
unavailable, problem.
DATA VALIDATION ERROR The data submiited is not valid. Notify user of
validation problems,

fix, then resubmit.

INVALID PERMISSIONS The client does not have the Notify user of
appropriate permissions to perform the | permission
given operation. problems.

INVALID_VERSION The version of the web service being Notify help desk.

called is old/invalid.

NOT_AUTHENTICATED

The client is not authenticated with the
enterprise.

Re-anthenticate
client.

QUERY SIZE

The size of the query is too large to
handle a must be redone with a smaller
request.

Repeat operation
with smaller query
size,

AIRNAV — Interface Control Document

28 of 77

(. (.
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

SCHEMA_VALIDATION_ERROR A message failed validation, Notify help desk.
UNKNOWN Umbrella fault type for as yet unknown | Gain insight from
exceptions. severity as to
recourse.

The severity types for exceptions are listed in the table below.

‘Table 4.5.3.3 Exception Severity Types

Enumeration Description

RETRY Cue that the exception is not fatal and that a simple retry will possibly remedy the
situation.

MINOR Cue that a recourse is possibly available and notification to user plus logging may
not be necessary.

MAJOR Cue that a recourse is not possible and notification to the user plus logging may be
necessary. Also notification to the Help Desk may be necessary.

5 Filters

This section describes the use of the OpenGIS® Filter Encoding Implementation
Specification [FILTER] to define filters to limit object queries.

This section follows the same order of description as in the OpenGIS® Filter Encoding
Implementation Specification, and includes parts of that specification.

A filter expression is used to select feature instances to be returned (for example, a
bounding box). Filters are as specified OpenGIS® Filter Encoding Implementation
Specification, with the limitations described below.

The Filter Encoding Implementation schemas may be obtained at
http://schemas.opengeospatial.net/Glter/1.1.0.

The filter encoding is used in a GetFeature and GetObject operations to define query
consiraints.

5.1 Property names

The <PropertyName> element is used to encode the name of any property of an
object. The property name can be used in scalar or spatial expressions to represent
the value of that property for a particular instance of an object.

AIRNAY - Interface Control Document 300f77

Airport Navigation Aid Database pplication 2.0 (AIRNAV 2.0) FAA - ATO

: {

For the AVN-WS GetFeature service, only the following property names in Table

5-1 are allowed.

Table 5.1 GetFeature Allowed Property Names

t:

Property Name Usage

country 2 character Country code

state 2 character State/Province code

objectName a humanly recognizable term for the object. This property may be

filtered with the PropertylsLike comparison operator, It must
include at least three (3} alphanumeric characters, Wildcarding
symbols will follow SQL conventions: ©_" for single characier, ‘%’
for any number of characters.

aixm:identifier

The objectID aixm:identifier (which is used to assign a globally
unique identifier to the same conceptual feature object).

objectVersion Version number of a feature

productionState any combination of the set of [Working, Pending, Active, History,
Future],

beginPosition Effective date (in GML 3.1.1 format)

endPosition End date

lastModifiedPosition Date feature was last modified.

For the AVN-WS GetObject service, only the following property names in Table 5-2
are allowed.

Table 5.1.2 GetObject Allowed Property Names

Property Name Usage

lastModifiedPosition

Date object was last modified.

5.2 Property References ([FILTER])

The filter property names (in Table 5.1 above) do not reference specific elements or
attributes of elements. As objects can also include complex or aggregate non-geometric
properties a filter expression processor must use the subset of XPath expressions defined
m [FILTER] in order to unambiguously reference simple properties and the properties

and sub-properties of objects with complex or aggregate properties or properties encoded
as XML attributes.

AIRNAYV - Interface Control Document 31 of 77

i o i o
Airport Navigation Aid Database Application 2.0 {AIRNAY 2.0) FAA - ATO

For the AVN-WS, the properties, other than objectName, are common to all features. The
actual attribute being filtered when objectName is given, depends on the feature type, as
listed in Table 5-4.

Table 5.2 Object Name References

Feature Object Name Element
aixm:AerodromeHeliport designator
aixm:Runway designator

aixm:Service AtAerodromeHeliport Cannot be filtered by Object Name.

aixm:Navaid identifier
aixm:DesignatedPoint designator
aixm:Holding Cannot be filtered by Object Name.

name
aixm:InstrumentApproachProcedure

5.3 Filter

A filter is any valid predicate expression that can be formed using the elements defined in
the OpenGIS® Filter Encoding Implementation Specification [FILTER]. The root
element <Filter> contains the expression which is created by combining these elements.

The root element of a filter expression, <Filter>, is defined by the following XML
Schema fragment:

<xsd:element name="Filter” type="ogc:FilterType”/>
<xsd:complexType name="FilterType”>
<xsd:choice>
<xsd:element ref="ogc:spatialOps™/>
<xsd:element ref="ogc:comparisonOps”/>
<xsd:element ref="o0gc:logicOps”/>
<xsd:element ref="ogc:_Id"” maxOccurs="unbounded”/>
</xsd:choice>
</xsd:complexType>

The elements <logicalOps>, <comparisonOps> and <spatialOps> are substitution
groups for logical, spatial and comparison operators. Logical operators may be used to
combine spatial operators and comparison operators in one filter expression. The < Id>
element is the head of a substitution group for object identifiers.

AIRNAY - Interface Cornifrol Document 320f77

{ :

Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0) FAA - ATO

5.3.1 Spatial Operators

A spatial operator determines whether its geometric arguments satisfy the stated spatial
relationship. The operator evaluates to TRUE if the spatial relationship is satisfied.
Otherwise the operator evaluates to FALSE.

Only the <BBOX> element which defines a bounding box constraint based on the
gml:Envelope geometry is supported in AVN-WS. The <BBOX> operator should
identify all geometries that spatially interact with the box. The calling service must
determine which spatial property is the spatial key and apply the BBOX operator
accordingly.

5.3.2 SRS Handling Of Literal Geometries In Filter Expressions

AVN-WS does not transform the gml:Envelope. co-ordinates (the Spatial Reference
System (SRS) of the gml:Envelope will be ignored). Spatial queries are performed using
the co-ordinates as supplied. Matching features are also returned in the coordinate
reference system with which they are stored.

5.3.3 Comparison Operators

A comparison operator 1s used to form expressions that evaluate the mathematical
comparison between two arguments. If the arguments satisfy the comparison then the
expression evaluates to TRUE. Otherwise the expression evaluates to FALSE.

This type definition includes the matchCase attribute which is of type Boolean and
controls whether string comparisons are caseless or not. A value of true means that string
comparisons also match case. This is the default value. A value of false means that string
comparisons are performed caselessly.

In addition to the standard set of comparison operators, this specification defines the
elements <PropertylsLike>, <PropertylsBetween> and <PropertyIsNull>. The
<PropertylsLike> element is intended to encode a character string comparison operator
with pattern matching. The pattern is defined by a combination of regular characters, the
wildCard character, the singleChar character, and the escapeChar character. The
wildCard character matches zero or more characters. The singleChar character matches
exactly one character. The escapeChar character is used to escape the meaning of the
wildCard, singleChar and escapeChar itself.

AIRNAY - Interface Control Document 330F 77

{

Airport Navigation Aid Databasé Application 2.0 (AIRNAV 2.0) 2 FAA - ATO

The <PropertyIsNull> element encodes an operator that checks to see if the value ofits
content is NULL. A NULL is equivalent to no value present. The value 0 is a valid value
and is not considered NULL.

The <PropertylsBetween> element is defined as a compact way of encoding a range
check. The lower and upper boundary values are inclusive.

9.3.4 Logical Operators

A logical operator can be used to combine one or more conditional expressions.
The logical operator AND evaluates to TRUE if all the combined expressions
evaluate to TRUE. The operator OR aperator evaluates to TRUE is any of the
combined expressions evaluate to TRUE. The NOT operator reverses the logical
value of an expression.

The elements <Anrd>, <Or> and <Not> can be used to combine scalar, spatial
and other logical expressions to form more complex compound expressions.

5.3.5 Object Identifiers ([FILTER] Section 11)

A object identifier is meant to represent a unique identifier for an object instance within
the context of the web service that is serving the object. This OpenGIS®

Filter Encoding Implementation Specification does not define a specific element for
identifying objects but instead defines the abstract element < Id> as the head of an XML
substitution group that may be used to define an object identifier element for specific
object types.

For GetFeatures, the AVN-WS uses the aixm:identifier (which is used to assign a
globally unique identifier to the same conceptual feature object. The codespace attribute
is used to identify the maintaining anthority or scheme for the identifier, e.g., UUID).

5.3.6 Expressions

An expression is a combination of one or more symbols that evaluate to single Boolean
value of true or false. Expressions are not supported in AVN-WS.

5.3.7 Arithmetic Operators

Arithmetic operators are binary operators meaning that they accept two arguments and
evaluate to a single result. Arithmetic operators are not supported in AVN-WS.

AIRNAV — Interface Control Document 340f77

T Ii' -
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

5.3.8 Literals

A literal value 1s any part of a statement or expression that is to be used exactly as it is
specified, rather than as a variable or other element. The <Literal> element is used to
encode literal scalar and geometric values. Literal geometric values must be encoded as
the content of the <Literal> element, according to the schemas of GML as described in
the Geography Markup Language (GML) Implementation Specification. That is to say
that any literal GML geometry instance must validate against the XML Schemas defined
for GML3.

5.3.9 Functions

A function 1s a named procedure that performs a distinct computation. A function may

accept zero or more arguments as input and generates a single result. Functions are not
supported in AVN-WS.

5.3.10 Filter Capabilities

The filterCapabilities.xsd schemna defines a capabilities document section that shall be
instantiated in the capabilities document of services that use filter encoding. The filter
capabilities document section describes what specific filter capabilities are supported by a
service. For example, a web feature service that uses filter encoding would include this
fragment in its capabilities document to advertise what filter capabilities it supports.
Filter capabilities are not supported in AVN-WS.

5.4 Examples

Example 1

A filter checking for features in Washington State.

<Filter>
<PropertylsEqualTo matchCase=False>
<PropertyName>state</PropertyName>
<Literal>W A</Literal>
</PropertylsEqualTo>

</Filter>

Example 2
Finding all features that have a geometry within the specified bounding box.
<Filter>
<BBOX>
<gml:Envelope srsName="*WGS84>
<gml:lowerCorner>13.0983 31.5899</gml:lowerCorner>

<gml:upperCorner>35.5472 42.8143</gml:upperCorner>
</gml:Envelope>

AIRNAV - Interface Control Document 35 0f 77

(- {- =
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

</BBOX>
</Filter>

Example 3

Features that are Active or Pending inside a Bounding Box.

<Filter>

<And>

<Or>

<PropertylsEqualTo>
<PropertyName> productionState </PropertyName>
<Literal>A</Literal>

</PropertylsEqualTo>

<PropertylsEqualTo>
<PropertyName> productionState </PropertyName>
<Literal>P</Literal>

</PropertylsEqualTo>

</Or>

<BBOX>
<gml:Envelope srsName=“WGS84”>
<gml:lowerCorner>13.0983 31.5899</gml:lowerCorner>
<gml:upperCorner>35.5472 42.8143</gml:upperCorner>
</gml:Envelope>

</BBOX>

</And>

</Filter>

Example 4
All versions of a particular feature
<Filter>
<PropertylsEqualTo>
<PropertyName>objectld</PropertyName>
<Literal>1234</Literal>
</PropertylsEqualTo>
</Filter>

Example 5
Features that are names “JF%” inside a Bounding Box.
<Filter>
<And>
<PropertylsLike wildCard="%" singleChar=" > escapeChar="1"">
<PropertyName>objectName</PropertyName>
<Literal>IF%</Literal>
</PropertylsLike>
<BBOX:>
<gml:Envelope srsName="WGS84”>
<gml:lowerCorner>13.0983 31.5899</gml:lowerCorner>

AIRNAV - Interface Conirol Document 26 of 77

i

Airport Navigation Aid Datal;ase Application 2.0 (AIRNAYV 2.0)

FAA-ATO

AIRNAV — Interface Control Document

<gml:upperCorner>35.5472 42.8143</gml:upperCorner>
</gml:Envelope>
</BBOX>
</And>
</Filter>

Example 6

Any object version effective (published) on a specified date (2001-01-15,

20:07:48.11).

<Filter>

<And>
<PropertylsLessThanOrEqualTo>
<PropertyName>beginPosition</PropertyName>
<Literal>2001-01-15T20:07:48.11</Literal>
<PropertyIsLessThanOrEqualTo>
<PropertylsGreaterThanOrEqual To>
<PropertyName>endPosition</PropertyName>
<Literal>2001-01-15T20:07:48.11</Literal>
<PropertylsGreaterThanOrEqual To>

</And>

</Filter>

Example 7

Any object version with an effective date within the time period, (2001-01-15

20:07:48.11 to 2001-04-15 12:22:25.30).

<Filter>
<PropertylsBetween>
<PropertyName>beginPosition</PropertyName>
<LowerBoundary>
<Literal>2001-01-15T20:07:48.11</Literal>
</LowerBoundary=>
<UpperBoundary>
<Literal>2001-04-15T12:22:25.30</Literal>
</UpperBoundary>
</PropertylsBetween>

</Filter>

Example 8

Any object version with a modified date is greater (later) than or equal to this

date/time.

<Filter>
<PropertylsGreaterThanOrEqual To>
<PropertyName>lastModifiedPosition</PropertyName>
<Literal>2001-01-15T20:07:48.11</Literal>
<PropertylsGreaterThanOrEqualTo>

</Filter>

37 of 77

(7
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

6 GetFeature Operation

This section specifies the GetFeature operation: its purpose, design, content, and usage,
providing examples.

6.1 Purpose

The GetFeature operation is used to retrieve /refresh a set of aeronautical feature
instances from a Data Server using spatial, temporal and textual filter parameters.

6.2 Design

6.2.1 GetFeature (OGC WFS 9.0)

The GetFeature web service request is based on the OpenGeospatial WFS specification.
[WFS] defines the schema for requesting and responding to GML features. This

specification was selected as it provides standardized service interface to GML features,
and as ATXM-5 implements a profile of GML.

The implementation is based on SOAP.

This operation is intended to support general querying/browsing of aeronautical objects
in a Data Source.

Design decisions:
1. Although the GetFeature service allows objects of more than one feature type
to be requested. Clients should consider requesting only one feature type, to
prevent queries against multiple databases that would slow down the response

time.

2. Spatial filters can be expressed as a location code (country and state) in order to
retain JAPA database inquiry capability, as well as expressed as a bounding box.

3. Wildcarding on object properties is included to match IFPA database inquiry
capability.

AIRNAYV - Interface Control Document 380f 77

| i {
Airport Navigation Aid Database Application 2.0 (AIRNAV 2. 0} FAA - ATO

6.2.2 DescribeFeatureType Operation (OGC WFS 8.0)

The function of the DescribeFeatureType operation is to generate a schema
description of feature types serviced by a WFS implementation,

6.3 Content

This section tailors the OGC Web Feature Service Implementation Specification [WFS]
document sections. It follows the same section ordering, and includes the applicable
sections as required.

6.3.1 Common Elements (OGC WFS 7.0)

6.3.1.1 Feature and Element Identifiers (OGC WFS 7.1)

AVN-WS, many instances (versions) of the same feature can exist, for example, Active
and Pending versions of a runway. In ATXM-5, the aixm:identifier uniquely identifies a
feature, but not a feature instance. Particular instances of a feature are identified through
timeslices. For uniqueness, AXIM-5 is extended to include a versionNumber element on
a timeslice, which when combined with aixm:identifier identifies a feature instance. The
aixm:identifier is set to the control number of the feature, with an appropriate codeSpace.

6.3.1.2 Feature State (OGC WFS 7.2)

A client application uses the application schema definition of a feature type to refer to
feature instances of that feature type, and to refer to the names and types of all the
properties of those feature instances. The values of all properties of a feature instance
constitute the state of that feature instance. A client application references feature
instances by the name of their feature type and the names and values of feature
properties.

6.3.1.3 Property Names (OGC WFS 7.3)

The property names used must be valid element and attribute names. In addition,
property names may be namespace qualified.

AIRNAYV — Interface Conitrol Document 39 0f77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) ' FAA - ATO

6.3.1.4 Property References (OGC WES 7.4)

The [WFS] states a WFS must use XPath expressions, for referencing the properties and
components of the value of properties of a feature encoded as XML elements or
attributes. It also mandates a subset of the XPath language that must be supported (it does
not require a WFS to support the full Xpath language).

6.3.1.5 <Native> Element (OGC WES 7.5)

The <Native> element is intended to allow access to vendor specific capabilities of any
particular web feature server or datastore.

The <Native> element simply contains the vendor specific command or operation.

The AVN-WS does not support <Native> commands/operations.

6.3.1.6 Filter (OGC WFS 7.6)

A filter is used to define the collection of feature instances that are to be returned.
Filter specifications are encoded, and are based on the OGC Filter Encoding
Implementation Specification [FILTER].

6.3.2 Exception reporting (OGC WFS 7.7)

In the event that a web feature service encounters an error while processing a request or
receives an unrecognized request, it generates an XML document indicating that an error
has occurred.

6.3.2.1 Common XML Attributes (OGC WFS 7.8)

6.3.2.1.1 Version Attribute

All XML encoded WFS requests include an attribute called version. The mandatory
version attribute is used to indicate to which version of the WFS specification the request
encoding conforms and is used in version negotiation.

For AVN WS the version reflects the OGC WFS version (currently 1.1.0).
Note, the AVN WS also has a version number that is sent with each message.

AIRNAYV — Interface Conirol Document 40 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

6.3.2.2 Service Attribute

All XML encoded WFS requests include an attribute called service. The mandatory
service attribute is used to indicate which of the available service types, at a particular
service instance, is being invoked. When invoking a web feature service, the value of the
service attribute shall be WFS.

6.3.2.3 Handle Attribute

The purpose of the handle attribute is to allow a client application to associate a
mmemonic name with a request for error handling purposes. If a handle is specified, and
an exception is encountered, a Web Feature Service may use the handle to identify the
offending element.

For AVN-WS, clients may use handles, and if supplied, the AVN-WS includes handle
attribute in fault responses. The AVN-WS does not make any assumptions about the
content of a Handle, clients may define their own content as to what they contain.

6.4 GetFeature Request Message (OGC WFS 9.0)

The Request Message contains the following XML elements:
* Request Header
* Request Summary: contains
* DataSourceNamespace
* GetFeature Request

6.4.1 GetFeature Request Introduction (OGC WFS 9.1)

The GetFeature operation allows retrieval of features from the AVN-WS. A
GetFeature request is processed by the AVN-WS and when the value of the
outputFormat attribute is set to text/gml; subtype=gml/3.1.1, a GML instance
document, containing the result set, is returned to the client.

If a web feature service implements Xlink traversal, a client can use the
traverseXlinkDepth and traverseXlinkExpiry attributes to request that nested
property XLink linking element locator atiribute (href) XLinks are traversed and
resolved if possible.

AIRNAYV - Interface Control Document 41 of 77

[("
Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0) FAA - ATC

6.4.2 Request (OGC WFS 9.2)

The <GetFeature> element contains one or more <Query> elements, each of which in
turn contains the description of a query. The results of all queries contained in a
GetFeature request are concatenated to produce the result set.

The optional outputFormat attribute specifies the format of the response to a
GetFeature request. The default value is text/xml; subtype=gml/3.1.1, and this
indicates that a valid GML3 document, that validates against a valid application schema
be returned. This defanlt will not be supported at this time. As ATXM-5 has a GML
profile derived from GML 3.1.1, the AVN WS returns an ATXM-5 Feature Collection.

Table 6.5.2 lists the possible values for the outputFormat attribute:

Table 6.4.2 Values for outputFormat Attribute

outputFormat Value Description
text/xml; This value indicates that an XML instance document must be generated that validates
subtype=gmi/3.1.1 against an ATXM-5 (and GML3) application schema. This is the default values of the

outputFormat attribute if the attribute is not specified in the GetFeature request. Note: This
will not be supported at this time.

application/x-gzip; This value indicates that a compressed XML instance document must be generated that
subtype=aixm/3rc2 validates against an ATXM-5 RC2 application schema. See Section 3.7 on compression.

A web feature service may respond to a GetFeature request in one of two ways. It can
either generate a complete response document or it may simply return a count of the
number of features that a GetFeature request would return. The optional resultType
attribute is used to control how a web feature service responds to a GetFeature request.

Table 6.5.2.1 Values for resultType Attribute

resultType e

Value Description

Results The default value results indicates that a web feature service should generate a complete response that
contains all the features that satisfy the request..

Hits The value hits indicates that a web feature service should process the GetFeature request and rather than
return the entire result set, it should simply indicate the number of feature instance of the requested
feature type(s) that satisfy the request. That is that the count should only include instances of feature
types specified in the typeName attribute (i.e. GetFeature/Query/@typeName).

The optional maxFeatures attribute can be used to limit the number of explicitly

AIRNAV - Interface Control Document 42 of 77

‘;‘ .

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

requested features (i.e. features specified via the GetFeature/Query/@typeName
attribute) that a GetFeature request presents in the response document. The
maxFeatures value applies to whole result set and the constraint is applied to the
features in the order in which they are presented. In addition, feature members
contained in a requested feature collection do not count — the requested feature
collection counts as one feature. Once the maxFeatures limit is reached, the result set is
truncated at that point. There is no default value defined and the absence of the attribute
means that all feature type instances in the result should be returned to the client.

For AVN-WS, the maxFeatures attribute is be supported. The AVN-WS may still report
an exception for queries which are not sufficiently constrained.

Each individual query packaged in a GetFeature request is defined using the

<Query> element. The <Query> element defines which feature type to query, what
properties to retrieve and what constraints (spatial and non-spatial) to apply to the feature
properties in order to select the valid feature set.

Note, in order to reduce message query processing times, and message sizes, the IFPS

applications only request one feature type to query, however the GetFeature request does
allow multiple queries to be included in a request.

The mandatory typeName attribute is used to indicate the name of one or more feature
type instances to be queried. Its value is a list of namespace-qualified names (XML
Schema type QName, e.g., aixm:Runway).

Note, in [WFS] feature types that are supported are advertised in the Capabilities
document of the WFS. For AVN-WS in Module 1, the Capabilities document of the WES
is not supported. The advertised allowed feature types are listed in Table 10-3.

The [WFS] specifies that more than one typename attribute indicates that a join
operation is being performed. For AVN-WS, this is not supported. (It is not clear how
Joins work in the WFS, and it appears that this option may be dropped from the next
release of [WFS].)

For each feature type, the additional feature types that may be requested with the feature
are listed.

Table 6.4.2.2 Allowed typeName

Allowed typeName’s

aixm:AerodromeHeliport

aixm:Runway

aixm:ServiceAtAerodromeHeliport

aixmi:Navaid

aixm:DesignatedPoint

AIRNAY - Interface Control Document 43 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} FAA - ATO

aixm;Holding

aixm:InstrumentApproachProcedure

The optional featureVersion attribute on the <Query> element is included in order to
accommodate systems that support feature versioning.

Note: As a result of comments from ISQ, feature versioning has been removed from the
next version of WFS (currently called V1.2) of the WFS specification (it appears that
there was not enough detail in the specification to allow an interoperable implementation
to be written).

For AVN-WS the featureVersion attribute is not supported. Selection of specific
versions of a feature are achieved through the <Filter> element.

The optional srsName attribute of the <Query> element is used to specify a specific
WEFS-supported SRS to be used for returned feature geometries.

For AVN-WS, the srsName attribute is not required, and is ignored. Features are
returned with the spatial properties, with which it is defined. A feature collection may
have a mixed set of vertical and horizontal datum.

The optional traverseXlinkDepth attribute indicates the depth to which nested property
XLink linking element locator attribute (href) XLinks in all properties of the selected
feature(s) are traversed and resolved if possible. A value of “1” indicates that one linking
element locator attribute (href) XLink is traversed and the referenced element returned if
possible, but nested property XLink linking element locator attribute (href) XLinks in the
returned element are not traversed. A value of “*” indicates that all nested property
XLink linking element locator attribute (href) XLinks are traversed and the referenced
elements returned if possible. The range of valid values for this attribute consists of

(Y3135

positive integers plus “*”.

The traverseXlinkExpiry attribute is specified in minutes. It indicates how long a Web
Feature Service should wait to receive a response to a nested GetGmlObject request.

For AVN-WS, the traverseXlinkExpiry attribute is not supported.

For AVN-WS, the traverseXlinkDepth is supported to indicate that xlinks get

traversed (and so referenced features are included in the response). This provides a
mechanism for a client to request swunmary and full details on features.

The traversal also traverses ‘referenced by’ associations. For example, a request for
Runway with traverseXlinkDepth = 1, would also return RunwayDirection features that
are associated to the Runway (as Runway is referenced by RunwayDirection in AIXM-

5).

For AVN-WS, the traverseXlinkDepth attribute is interpreted as follows:

AIRNAV - Interface Control Document 44 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* traverseXlinkDepth = 0 - the AVN-WS returns the requested feature type only
(and any objects that are an aggregate of that feature). This is equivalent to a
“Summary” request/response.

* traverseXlinkDepth = * - the AVN-WS will returns the requested feature type,
and all associated feature types, as shown in Table 10-4 below. In effect xlinks are
traversed up to certain points, depending on the requested feature type. This is
equivalent to a “Full” request/response.

The value of each <wfs:PropertyName> element is a namespace-qualified name
(XML Schema type QName, e.g. myns:address) whose value must match the name of
one of the property elements in the GML representation of the relevant feature. The
relevant feature is of the type indicated as the value of the typeName attribute of the
parent <Query> element. If <wis:PropertyName> is absent all properties are returned.
If <wfs:PropertyName> is present then selected plus any ‘mandatory’ properties are
returned.

Note: In AIXM, all property elements are optional, so there are no mandatory elements in
a feature.

A <wis:XlinkPropertyName> element may be used instead of the
<wis:PropertyName> element to enumerate feature properties that should be selected
during a query and whose values should be processed by a GetGmlObject operation as
specified by the traverseXlinkDepth and traverseXlinkExpiry attributes to traverse and
resolve nested property XLink linking element locator attribute (href) XLinks that those
values contain. The traverseXlinkDepth and traverseXlinkExpiry attributes on the
<wfs:XlinkPropertyName> element apply only to the value of the named property, and
override the values of the traverseXlinkDepth and traverseXlinkExpiry attributes, if
any, on the <GetFeature> element.

The <Filter> element is used to define constraints on a query. Both spatial and/or
nonspatial constraints can be specified as described in Section 5.3.

A <Filter> element is required. It must contain either a spatial (bounding box), or
country/state code properties in order to constrain the feature collection to be retrieved.

The <SortBy> element is used to specify a list of property names whose values should be
used to order (upon presentation) the set of feature instances that satisfy the query.

Table 6-4 enumerates the AIXM-5 feature types that are returned if
traverseXlinkDepth = *. Feature types marked as ‘Local to XML Document’ have no
aixm:identifier (FAA Enterprise control number), and can only be referenced by other
features in the same XML document. It also lists the ATXM-5 objects that are
aggregates of each feature type.

AIRNAYV - Interface Control Document 45 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO
Table 6.4.2.3 Feature Collections
Local
Feature | ATXM Feature Typesin the | ° | AIXM Objects Included
Type . XML . Comments
Feature Collection with the Feature
Requested Docum
ent

por

AérodromeHeliport 7 .}élevatedPéiﬁt
{hasReferencePoint)

ole (hasPositions)

Runway SurfaceCharacteristics The Runway feafufe has an Object
Reference (association) to an
Aerodrome Heliport feature.

RunwayDirection RunwayCenterlingPointR | The Runway Direction objects that ax

associated to the returned Runway
objects. The Runway Birection featw
has an Object Reference (association)
to a Runway feature. The Runway
Direction feature has an Object
Reference (association) to Runway
Centerline Point features,

RunwayCenterlinePoint] ElevatedPoint (located At)

The Runway Centerline Point objects
that are associated to the returned
Runway Direction objects.

RunwayDeclaredDistance i

The Runway Direction Declared
Distance objects that are associated to
the retumed Runway Direction object
The Runway Direction Declared
Distance feature has an Object
Reference (association) to a Runway
Direction feature.

RunwayProtectAreas fi

Runway Protect Area derives from the
Landing Protection Area abstract
feature. The Runway Protect Area
objects that are associated to the
returned Runway Direction objects. T
Runway Protect Area feature has an
Object Reference (association) to a
Runway Direction feature.

RunwayVisualRange [

The Runway Visual Range objects th:
are associated to the returned Runway
Direction abjects. The Runway Visna.
Range feature has an Object Referenc
(association} to @ Runway Direction
feature.

AIRNAV — Interface Control Document

46 of 77

Airpori Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO

VisualGlideSlopelIndicator

The Visual Glide Slope Indicator
ohjects that are associated to the
returned Runway Direction objects, T
Visual Glide Slope Indicator feature h
an Object Reference {(association) to a
Runway Direction feature.

RunwayDirectionLightSyste
m

Runway Direction Light System deriv
from the Surface Light System abstrac
feature. The Runway Direction Light

Systetn objects that are associated to t
returned Runway Direction objects. T
Runway Direction Light System featu
has an Object Reference {association)
to a Runway Direction feature.

ApproachLightingSystem

The Approach Lighting System objec
that are associated to the returned
Runway Direction objects. The
Approach Lighting System feature ha:
an Object Reference (association) to a
Runway Direction feature,

ServiceAtAerodromeHeliport

ElevatedPoint Service At Aerodrome Heliport derive
ServiceAtAerodromeHeliport (locatedAt) Timetable from the Service abstract feature.
{hoursOf)
Frequency 1 CallsignDetail The Frequency objects that are
(identifiedBy) associated to the returned Service
objects. The Frequency feature has an
Object Reference {association) to a
Service feature.
Navaid
Navaid NavaidComposition
ElevatedPoint
(hasNavipableLocation)
NavaidEquipment ElevatedPoint The Navaid Equipment objects that ar
{hasLocation) associated to the returned Navaid

objects. Navaid Equipment includes a
derived classes (VOR, NDB, eic).

RadioFrequencyLimitation

CircleSector (concerns)

The Radio Frequency Limitation
objects that are associated to the
returned Navaid Equipment objects.
The Radio Frequency Limitation
feature has an Object Reference
{association) to a Navaid Equipment
feature.

AIRNAV - Interface Control Document

47 of 77

{,' ' : .‘.. H
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

DesignatedPoint

DesignatedPoint Point (locatedAt) Only returns from FIX database.

PointReference AngleIndication The PointReference features that are
{basedOnAngle) associated to the Designated Point.
Distancelndication These are the Describing facilities fro:
(basedOnDistance) FAA Enterprise Fix application.

6.4.3 Response Message (OGC WFS 9.3)

The Response Message contains the following XML elements:
* Response Header: as specified in Section 4.5.2.1.
* Response Summary: contains
* DataSourceNamespace: identifies the Data Source uniquely.
* Object Set: contains the response objects

If the outputFormat attribute is application/x-gzip; subtype=aixm/re2, each element in
the object set may contain XML data in an ASCII encoded binary form (XML Schema
base64binary) and is optionally compressed. The response element also contains the
truth-value of compression with a false denoting the response data is not compressed and
a true denoting compression has occurred on the data.

Optionally, timestamp and numberOfFeatures atiributes may also be added to the
response object for the client applications' use. The mime-type of the response data is
controlled by the outputformat attribute of the request message. The uncompressed data
attribute equates to an XML document with root
aixm:AbstractFeatureMemberArrayType.

Note, in [WFS] the wfs:FeatureCollectionType base class is
gmi:AbstractFeatureCollectionType. To align with AIXM-5 (which defines base
schemas that can be more easily versioned to GML v3.2), and to require all possible
feature types to be included in the schema, the wis:FeatureCollectionType base class is
changed to aixm:AbstractFeatureMemberArray Type.

Note, the [WFS] specifies that if there are traversed Xlinks in the response, then a
comment containing the locator attribute followed by the child elements contained in the
XLink linking element, are written to the response element. Effectively, the

referenced features are nested in the referencing feature. As this is not consistent with
AIXM-5 feature collections, for AVN-WS all referenced features are part of the feature
collection (a feature instance is never nested in another feature instance).

The content of the <wfs:FeatureCollection> element is controlled by the value of the
resultType attribute on the <GetFeature> element which is described above. If the
specified value of the resultType attribute is results (the default value) then the AVNWS
generates a complete response as the content of the <wfs:FeatureCollection> element.

AIRNAY — Interface Control Document 48 of 77

(o o
Airport Navigation Aid Database Application 2.0 {AIRNAV 2.0} ' FAA - ATO

If, however, the value of the resultType attribute is specified as hits, the AVN-WS
service generates a <wfs:FeatureCollection> element with no content (i.e. empty) and
populate the values of the timeStamp attribute and the number OfFeatures attribute. In
this way a client may obtain a count of the number of features that a query would return
without having to incur the cost of transmitting the entire result set.

For AVN-WS the lockId attribute is not used. The optional timeStamp atiribute 1s used
by AVN-WS to indicate the time and date when a response was generated.

The optional numberOfFeatures attribute is used by AVN-WS to indicate the number of
features that are in the response document. The count should only include feature type
instances of the feature type name specified in the typeName attribute of the <Query>
element (i.e. GetFeature/Query/@ftypeName) used to generate the response.

Any GML document generated by a WES implementation, in response to a query where
the outputFormat is the MIME type text/xml; subtype=gmi/3.1.1, must reference an
appropriate GML application schema document so that the output can be validated.

This may be accomplished using the schemaL.ocation attribute. This atiribute indicates
the physical location of one or more schema documents which may be used for local
validation and schema-validity assessment. The schemal.ocation attribute value contains
pairs of values. The first member of each pair is the namespace for which the second
member is the hint describing where to find to an appropriate schema document.

The physical location of the schema documents is specified using a URI.
For AVN-WS the schemaLocation attribute is not supported.

The response Object Set should also denote the source application. This allows the

Enterprise Service Bus to aggregate data from multiple providers into a single response
message if necessary.

6.4.4 Fault Message (OGC WFS 9.4)

The Fault Message contains the following XML elements:
* Fault Description: as specified in Section 4.5.3.1
* Fault Exceptions: as specified in Section 4.5.3.2

6.5 Usage

Scenarios where IFPA Applications use GetFeature are as follows:

AIRNAYV — Interface Conirol Document 49 of 77

]",-» . . é, g

Airport Navigation Aid Databasé Application 2.0 {AIRNAV 2.0} FAA - ATO

1. Retrieving objects within a geographic area (populating a Work Area)
Requires identifying objects within a spatial bounding box.

2. Refreshing a Work Area
Requires identifying objects that have been modified since a particular date/time.

3. Retrieving objects within a geographic area matching a name
Requires wildcarding of an ObjectName.

4. Retrieving objects within a geographic area using a combination of text filter
parameters.

6.6 Examples

6.6.1 Retrieving Objects Within a Geographic Area

Obtaining a summary of the Aerodromes within a spatial bounding box.

GetFeature Request Message:
* Request Header
* InterfaceVersion: 2.1
* UserAgent: NFPG21 Windows XP 1.1 Targets
* UserID: Glenn
* SessionToken: !@#$%"&*()
* RequestID: 234
* Request Summary
* DataSourceNamespace: http:/fus.gov.dot.faa/ato/avn/enterprise

6.7.2 Refresh a Work Area

The modification date is used to identify objects that have changed since the last
retrieval or refresh of data.

GetFeature Request Message:
* Request Header
* InterfaceVersion: 2.1
* UserAgent: NFPG21 Windows XP 1.1 IPDS Application 2.0
* UserlD: Glenn
« SessionToken: !|@#$%"&*()
* RequestID: 234

AIRNAYV - Interface Confrol Document 50 of 77

- 0
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* Request Summary
* DataSourceNamespace: http://us.gov.dot.faa/ato/avi/enterprise

7 GetGMLODbject Operation

This section specifies the GetGmlQObject operation: its purpose, design, content, and
usage, providing examples.

7.1 Purpose

The GetGmlObject operation is used to retrieve/refresh a set of features from a Data
Server using object identifiers. It is intended for retrieving a specific object version or a
set of versions of an object.

7.2 Design

The GetGmlObject web service request is based on the OpenGeospatial WEFS
specification. The implementation is based on SOAP.

7.3 Content

This section tailors the OGC Web Feature Service Implementation Specification
document sections. It follows the same section ordering, and includes the applicable
sections as required.

7.3.1 GetGmIObject Request Message (OGC WFS 10.0)

The Request Message contains the following XML elements:
* Request Header: as specified in Section 4.5.1.1.
* Request Summary: contains
* DataSourceNamespace: identifies the Data Source uniquely.
* GetGmlObject Request

AIRNAV — Interface Control Document 51 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATC

7.3.2 GetGmIObject Request Introduction (OGC WFS 10.1)

The GetGmlObject operation allows retrieval of features and elements by identifier from
the AVN-WS. A GetGmlObject request is processed by the AVN-WFS, and an XML
document fragment, containing the result set, is returned to the client. The GetGmlObject
request provides the interface through which the WFS can be asked to traverse and
resolve XLinks to the features it serves.

The <GetGmlObject> element is used to request that a web feature service return an
element with a gml:id attribute value specified by an oge:GmlObjectId. A
GetGmlObject element contains exactly one <GmlObjectId>, The value of the gml:id
attribute on that <GmlObjectId> is used as a unique key to retrieve the complex element
with a gml:id aftribute with the same value.

In AIXM, features are uniquely identified by axim:identifier and a version. Need to
replace <xsd:element ref="ogc:GmlObjectld”’/> with an Object Reference, which would
be represented as an Xlink.

The outputFormat attribute defines the format to use to generate the result set, and has
the same options as in the GetFeature service, defined in Section 10.5.2.

The traverseXlinkDepth, traverseXlinkExpiry attributes have the same options as in
the GetFeature service, defined in Section 10.5.2.

7.3.3 Processing (OGC WFS 10.2)

For AVN-WS, the GetGmlObject operation is not supported for remote
resources (that is, it does not support re-direction of queries).

The data source store is searched for an element with an identifier equal to the
requested ID. If no such element is found, the AVN-WS will raise an exception.

7.3.4 Response Message (OGC WFS 10.3)

The Response Message contains the following XML elements:
* Response Header
* Response Summary: see below

The format of the response to a GetGmlObject request is controlled by the
outputFormat attribute,

The OGC WEFS specifies that the response to a GetGmlObject request is the GML
element returned as an XML document fragment.

AIRNAYV — Interface Conirol Document 520f77

Airport Navigation Aid Databasé Application 2.0 (AIRNAYV 2.0) FAA - ATO

For AVN-WS, the response to a GetGmlObject request, is the same as the response to a
GetFeature request, a complete document containing a wis:FeatureCollection. This
provides a common response format for the clients.

7.3.5 Fault Message (OGC WFS 10.4)

The Fault Message contains the following XML elements:
* Fault Description: as specified in Section 4.5.3.1
* Fault Exceptions: as specified in Section 4.5.3.2

7.4 Usage

Scenarios where IFPA Applications use GetGmlQObject are as follows:

1. Obtaining the Full deseription of an object when browsing.

If a Data Browser contains a Summary description of an object, GetGmIObject
can be used to obtain the Full description. In this situation, for AVNIS data the
ObjectVersion will be known. Quick response is desirable, so the Enterprise
database should be optimized for handling a request that consists of an
ObjectID and ObjectVersion.

2. Obtaining an object when assembling the object model for an instrument
procedure, fix, etc.

When an existing instrument procedure is loaded into a Work Area, in order to
edit it, all the other objects on which it is dependent must be loaded. To do this,
the application uses GetGmlObject (Full description, providing ObjectID and
ObjectVersion) to traverse the dependency graph of the object model.

3. Obtaining other versions of a particular object

If Version N of an object has been retrieved, the operator may want to view or
select previous or later versions of the object. To do this, the application uses
GetGmlObject, providing the ObjectID and Version.

7.5 Examples

7.5.1 Obtain the Full Description of an Object

GetGmlObject Request Message:
* Request Header
» InterfaceVersion: 2.1
* UserAgent: NFPG21 Windows XP 1.1 IPDS Application 2.0

AIRNAV - Interface Conirol Document 530f77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* UserID: Glenn

» SessionToken: |@H#$%"&*()

» RequestlD: 234

* Request Summary

» DataSourceNamespace: http://us.gov.dot.faa/ato/avn/enterprise

8 GetObject Operation

This section specifies the GetObject operation: its purpose, design, content, and usage,
providing examples.

8.1 Purpose

The GetObject operation is used to retrieve/refresh a set of objects from a Data Server
using spatial, temporal and textual filter parameters. The GetObject supports access to
non-aeronautical data object types.

8.2 Design

The GetObject request is sent by the client application to the server (Data Source).
The implementation is based on SOAP.
This operation is intended to support general querying/browsing of the Data Source.
Design decisions:
1. Objects of only one ObjectType can be requested. This is done in order to
simplify the processing logic on the data server side. It also prevents queries

against multiple databases that would slow down the response time.

2. Spatial filter can be expressed as a location code (country and state) in order to
retain IFPA database inquiry capability, as well as expressed as a bounding box.

3. Wildcarding on the ObjectName is included to match TAPA database inquiry
capability.

4. Wildcarding on the ObjectName element follows SQL conventions for the
LIKE operator:

* Underscore symbol ‘_* means match any single character in this
position.

AIRNAYV — Interface Control Document 54 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} FAA - ATO

* Percent sign ‘%’ means match to any number of characters in this
position.

8.2.1 Request Message
The Request Message contains the following XML elements:

* Request Header

* Request Summary: contains
* DataSourceNamespace: identifies the Data Source uniquely.
* Detail: [Full, Summary]
* ObjectType: identifies a group of objects that share the identical
set ofobject properties.
* ObjectDirectory (required if the ObjectType is ObjectDirectory,
otherwise element not allowed): identifies a particular Object
Directory using a path expression, i.e., */* separates directory
levels, e.g., /Terrain/DTEDS.

* Filter (optional, the Data Source may reject unconstrained queries for
specific object types):

» The Filter uses the same <Filter> element schema pattern as in

the GetFeature service

» Filter provides the following spatial options:
* BoundingBox: lower left and upper right corners of
geographic extent specified in latitude and longitude
coordinates in WGS 84. Returns any object overlapping
(interior) of bounding box.
*LocationCode: couniry and, optionally, state.

* Filter provides the following options, to filter object based on the

values of one or more properties.
* Property Name: Name of property to be filtered (e.g.,
ObjectName, ProductionState, EffectiveDate,
MoedificationDate)
» Literal Value: constrained value for the property.
Wildearding symbols follow SQL conventions: *_* for
single character, ‘%’ for any number of characters.
* Logical eperators: AND, OR
* Comparison operators: (greater than, less than or
between)

8.2.2 Response Message

The Response Message contains the following XML elements:
* Response Header: as specified in Section 4.5.2.1.

AIRNAYV — Interface Confrof Document 55 of 77

Airport Navigation Aid Dgtabasé Application 2.0 (AIRNAV 2.0) FAA - ATO

* Response Summary: contains :
* DataSourceNamespace: identifies the Data Source uniguely.
* Detail: [Full, Summary], Full may be provided even if Summary
requested.
* ObjectType: identifies the ObjectType of the group of objects being
returned. If an ObjectDirectory contains Terrain, the ObjectType will
indicate Terrain.
* ObjectDirectory (required if the ObjectType is ObjectDirectory,
otherwise element not allowed): identifies a particular Object Directory
using a path expression, i.e., /” separates directory levels, e.g.,
/Terrain/DTED.
* ObjectsFound: number of objects in Object Set, may be zero.
* Object Set: contains the objects matching the request.

8.2.3 Fault Message

The Fault Message contains the following XML elements:
» Fault Description: as specified in Section 4.5.3.1
* Fault Exceptions: as specified in Section 4.5.3.2

8.3 Usage

Scenarios where IFPA Application uses GetObject are as follows:

1. Retrieving the top-level Object Directories of a Data Source
The IPDS Application Data Browser requires top-level directories to organize
geospatial reference data.

2. Retrieving the contents of an Object Directory

It must be possible to expand an Object Directory within the IPDS Application
Data Browser, retrieving the objects within, meeting the constraints of the filter
parameters.

3. Retrieving objects within a geographic area (populating a Work Area)
Requires identifying objects within a spatial bounding box.

4. Refreshing a Work Area
Requires identifying objects that have been modified since a particular date/time.

5. Retrieving objects within a geographic area matching a name
Requires wildcarding of an ObjectNarme.

6. Retrieving objects within a geographic area using a combination of text filter
parameters.

AIRNAY - Interface Control Document 56 of 77

¢ . i

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

8.4 Examples

8.4.1 Retrieve the Top-Level Object Directories of a Data Source

Retrieving from the “root” directory of the Data Source.
GetObject Request Message:
* Request Header
* InterfaceVersion: 2.1
* UserAgent: NFPG21 Windows XP 1.1 IPDS Application 2.0
» UserID: Glenn
» SessionToken: |@#E% &*()
* RequestiD: 234
* Request Summary
* DataSourceNamespace: hitp://us.gov.dot.faa/ato/avn/enterprise
* Detail: Full
* ObjectType: ObjectDirectory
* ObjectDirectory: /

8.4.2 Retrieving the Contents of an Object Directory

Retrieving from the Terrain directory.

GetObject Request Message:
* Request Header
* InterfaceVersion: 2.1
* UserAgent: NFPG21 Windows XP 1.1 IPDS Application 2.0
* UserID: Glenn
» SessionToken: !@#%%"&*()
* RequestID: 234
* Request Summary
« DataSourceNamespace: hitp://us.gov.dot.faa/ato/avn/enterprise
= Detail: Full
» ObjectType: ObjectDirectory
* ObjectDirectory: /Terrain

8.4.3 Retrieving Objects Within a Geographic Area
Obtaining a summary of the Aerodromes within a spatial bounding box.

GetObject Request Message:
* Request Header
* InterfaceVersion: 2.1
* UserAgeni: NFPG21 Windows XP 1.1 IPDS Application 2.0
» UserlD: Glenn
» SessionToken: !@#S%"&*()

AIRNAYV - Interface Control Document 57 of 77

; f {
{ {

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* RequestID: 234
* Request Summary
* DataSourceNamespace: hitp://us.gov.dot.faa/ato/avn/enterprise
* Detail: Summary
* ObjectType: RadarTrack
» Filter
* BoundingBox
* LowerLeftCorner: N38:12:13.391 W077:24:19.626
* UpperRightCommer: N41:32:22.877 W073:04:36.573

8.4.4 Refresh a Work Area

ModificationDate is used to identify objects that have changed since the last retrieval or
refresh of data.

GetObject Request Message:
* Request Header
* InterfaceVersion: 2.1
* UserAgent: NFPG21 Windows XP 1.1 IPDS Application 2.0
* UserID: Glenn
* SessionToken: !@#$%"&*()
* RequestID: 234
* Request Summary
* DataSourceNamespace: http://us.gov.dot.faa/ato/avn/enterprise
* Detail: Summary
* ObjectType: RadarTrack
» Filter
* BoundingBox
* LowerLeftCorner: N38:12:13.391 W077:24:19.626
» UpperRightCorner: N41:32:22.877 W073:04:36.573
* Property ModificationDate greater than November 10,

9 PutFeature Operation

This section specifies the PutFeature operation: its purpose, design, content, and usage,
providing examples.

9.1 Purpose

AIRNAV ~ Interface Conirol Document 58 of 77

i | :
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

The PutFeature operation is used to store aeronautical features back to a Data Server. It
submits one “Transactable Feature Collection’, a tightly coupled set of features that are to
be stored in one database transaction.

9.2 Design

The PutFeature request is sent by the client application to the server (Data Source).
The implementation is based on SOAP.

Design considerations/decisions:
1. The transaction to save any individual object back into an FAA Enterprise
database may fail, for reasons beyond what the requesting Application can
possibly know. To simplify control and packaging of data over the interface, it is
recommended that each database transaction be performed through separate
" mvocations of a “PutFeature” Web Service, i.e., save one (or a few) features at a
fime.

2. A transaction order can be established from a depth-first traversal of the
composition hierarchy of objects.

3. This interface control document specifies what the transaction units must be,
primarily based on an analysis of FAA Enterprise needs. There are situations
where a set (directed acyclic graph) of objects may need to be submitted. This set
of features is called a ‘Transactable Feature Collection’.

4. The Operator determines whether a submission is an update or amendment.
Each Transactable Feature Collection submitted is tagged accordingly. Objects
submitted back to the AVN Enterprise fall into one of the following categories:

a) An update (save/overwrite existing version/amendment), if object
already exists in the Enterprise. User must be authorized to update it.

b) An amendment if object already exists in the Enterprise.
c) A completely new object, original version.

5. An original (completely new) object does not have a Data Source ObjectID
when submitted. The recipient Data Source needs to manufacture its own
ObjectID (and ObjectVersion) and provide this information back to the
requesting Application. There may also be other object properties that need to
be manufactured by the Data Source and returned, e.g., EffectiveDate. For a
Transactable Feature Collection, the Data Source needs to manufacture and
provide this information for each new object in the set.

AIRNAYV - Interface Control Document 89 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO

6. The FAA Enterprise is responsible for assigning the Effective Date for
publication. It sets this property on all original and amended objects. The assigned
EffectiveDate must be returned to the calling Application.

7. Future states: ‘for publishing’, fiture (multiple allowed), or ultimate (only one).
FAA Enterprise derives this state value on submission of data from the associated

PTS Workflow

9.2.1 Transactable Feature Collections

The Table 13-1 lists the allowed feature type collections, and the types of feature

in each collection.

Table 9.2.1 PutFeature Collections

Feature
Collection ATXM Feature Types Allowed in the

Type Feature Collection

Comments

omeHeliport

AerodromeHeliport

Runway

RunwayDirection

RunwayCenterlinePoint

Feature Collection must include a
RunwayDirection feature

RunwayDeclaredDistance

Feature Collection must include a

RunwayDirection feature
RunwayProtectArea Feature Collection must include a

RunwayDirection feature
RunwayVisualRange Feature Collection must include a

RunwayDirection feature

VisualGlideSlopelndicator

RunwayDirectionLightSystem

Frequency

Feature Collection must include a
ServiceAtAerodromeHeliport feature

Navaid

AIRNAY — Interface Control Document

60 of 77

Airport Navigation Aid Databa'se Application 2.0 (AIRNAV 2.0) FAA - ATO

NavaidEquipment

RadioFrequencyLimitation

Designated Point = .~
DesignatedPoint

Feature Collection Type

PointReference (Module 2) Designated Point

InstrumentApproachProcedure

ServiceOnInstrumentApproachProce dure
CirclingArea

TerminalArrivalArea

ProcedureTransition

SegmentLeg

ArrivalFeederLeg

InitialLeg

IntermediateLeg

FinalLeg

MissedApproachLeg

HoldingPattern

SafeAltitudeArea

9.2.2 Request Message

The Request Message contains the following XML elements:

* Request Header: as specified in Section 4.5.1.1.
* Request Summary: contains
* DataSourceNamespace: identifies the Data Source uniquely.
* ProjectID: unique identifier for the PTS Project.
* ProjectName: name of the Project, to help later diagnosis or auditing of
the request.
* Feature Type: identifies the type of the Transactable Feature Collection
* Feature Count: the number of feature instances in the Transactable
FeatureCollection, must be greater than zero.
* Feature Collection: for each feature timeslice in the Feature Collection, the
following is provided:
* Operation: [Create, Update, Amend, Delete], with the following semantics:

* Create: new/original object being submitted. Tts ObjectID and
ObjectVersion properties provided have been manufactured outside of

AIRNAYV — Interface Control Document 61 of 77

!’, !

Airport Navigation Aid Databasé Application 2.0 (AIRNAV 2.0} ‘ FAA - ATO

the recipient Data Source.

* Update: changes to an object version that already exists in the Data
Source. The ObjectID and ObjectVersion provided are those of the
recipient Data Source. The ObjectVersion is not changed as a result of
an Update operation.

* Amend.: arevision of an existing object, that necessitates a new object
version. The ObjectID and ObjectVersion provided are those of the
object taken from the Data Source, i.e., the ObjectVersion has not

been changed. The recipient Data Source manufactures a new
ObjectVersion.

* Delete: notice to remove an object from the Data Source. No top-level
object can be deleted; however a subservient child object can be
deleted if and only if the Operation on its parent is Update.

* Feature Properties: full description of object including all essential Object
Reference properties.

9.2.3 Response Message

The Response Message contains the following XML elements:

* Response Header: as specified in Section 4.5.2.1.

* Response Summary: states for each feature instance in the Transactable
Feature Collection:

* Feature Receipt

* Operation: [Create, Update, Amend, Delete], as submitied.

* Feature Type: identifies the type of the feature, as submitted.

* Client Object Reference

* Namespace: as submitted.

* ObjectID: as submitted.

« ObjectVersion: as submitted.

* ObjectName: as submitted.

* Data Source Object Reference: includes properties that may be manufactured
by the Data Source

* Namespace: as manufactured by Data Source: a new value from what was
submitted for Create operation.

* ObjectID: as manufactured by Data Source: a new value from what was
submitted for Create operation.

* ObjectVersion: as manufactured by Data Source: a new value from what was
submitted for Create and Amend operations.

* ObjectName: as submitted.

AIRNAY — Interface Control Document 62077

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* ProductionState (optional): any combination of the set of [Working, Pending,
Active, History, Future].

* EffectiveDate (optional): expressed as a GML Timelnstant.

* ModificationDate (optional): expressed as a GML

Timelnstant.

9.2.4 Fault Message

The Fault Message contains the following XML elements:
* Fault Description: as specified in Section 4.5.3.1
* Fault Exceptions: as specified in Section 4.5.3.2

9.3 Usage

The typical fashion in which PutFeature is intended to be used for the purpose of storing
data back into the FAA AVNIS data server is suggested below:

1. The operator uses the client application to create and edit data objects.

2. The operator uses the client application to prepare the data objects to submit to
a Data Source. This includes specifying:

a} The Project under which the changes are being submitted.

b) For every changed feature, whether it is an amendment or an update.

3. Once the operator confirms that the data is to be submiited, the client
application determines the first Transactable Feature Collection to be sent to the
Data Source, based on the established order of precedence
a) For new objects, the client application provides manufactured ObjectID
and ObjectVersion.

4. The client application issues the PutFeature request containing the first
Transactable Feature Collection.

5. The FAA Enterprise data server validates the PutFeature request.
a) The Project ID is validated, and the submission only proceeds if the
Project has been assigned to the UserlD.
b} The Transactable Feature Collection 1s validated:
1. For an update operation, the data server verifies that the user has
update authorization.
2. For some ObjectTypes, the data server checks object-specific
properties, e.g., the name of a Fix within CONUS, to ensure it is on
the available Fix Name List.
6. The FAA Enterprise data server manufactures unspecified object properties.
For example,

AIRNAYV — Interface Control Document 630f 77

{ {

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) B FAA - ATO

a} ProductionState: based on the characteristics of the Project, the values
for object status are set, e.g., working, future, etc.
b} EffectiveDate: based on the target publication date for the Project, the
object’s effective date is set.
7. The FAA Enterprise data server inserts, updates, deletes the objects in the
Transactable Feature Collection as a single transaction. As part of the transaction,
the ObjectID and ObjectVersion are handled as follows:
a) Create operation: the data server manufactures a new unique ObjectID
and the ObjectVersion is set as “original’.
b) Update operation: the data server uses the ObjectID and ObjectVersion
provided. '
c) Amend operation: the data server re-uses the ObjectID and
manufactures the next ObjectVersion.
d) Delete operation: the data server uses the ObjectID and ObjectVersion
provided.
8. The FAA Enterprise data server completes any follow-on “book-keeping”
resulting from the transaction. For example,
a) The Project is updated, adding Object References, possibly adding
Tasks.
b) Object-specific book-keeping is performed, e.g., removing the name
used for a new Fix from the Available Fix Names List.

9. The FAA Enterprise data server assembles the PutFeature response, including
object properties it has manufactured, e.g., ModificationDate.

10. The client application unpacks the PutFeature response and updates its copies
of the objects submitted with the properties manufactured by the Data Source: one

or more of ObjectID, ObjectVersion, ProductionState, EffectiveDate,
ModificationDate, ete.

11. The client application proceeds to the next Transactable Feature Collection in

the order of precedence, returning to step 4, until all have been stored on the FAA
Enterprise data server.

10 PutObject Operation

This section specifies the PutObject operation: its purpose, design, content, and usage,
providing examples.

10.1 Purpose

The PutObject operation is used to store non-aeronautical objects back to a Data Server.

AIRNAV - Interface Confrol Document 64 of 77

!{.
i

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) C FAA - ATO

It submits one ‘Transactable Object Set’, a tightly coupled set of objects that are to be
stored in one database transaction.

10.2 Design

The PutObject request is sent by the client application to the server (Data Source).

The implementation is based on SOAP.

1. The PutObject service has similar design considerations/decisions to the
PutFeature service.

2. A transaction order can be established from a depth-first traversal of the
composition hierarchy of objects managed by the IFPA Applications.

3. This interface control document specifies what the transaction units must be,
this set of objects is called a ‘Transactable Object Set’.

4. The Operator determines whether a submission is a new object, update or
amendment. Each Transactable Object Set submitted is tagged accordingly.

5. Every submission back to the FAA Enterprise must be associated with a
Workflow Project.

6. The FAA Enterprise is responsible for validating the Workflow Project, and
performing any necessary updates within PTS to link Workflow objects to the
new or amended data objects in the Enterprise.

7. Future states: “for publishing’, future (multiple allowed), or ultimate (only one).

FAA Enterprise derives this state value on submission of data from the associated
PTS Workflow.

8. The workflow for aeronautical objects are by association with the Fix / SIAP,
etc that they are linked to.

10.2.1 Request Message

The Request Message contains the following XML elements:
* Request Header: as specified in Section 4.5.1.1.
* Request Summary: contains
* DataSourceNamespace: identifies the Data Source uniquely.
* ProjectID: unique identifier for the Project.

* ProjectName: name of the Project, to help later diagnosis or auditing of the
request.

AIRNAV - Interface Control Document 65 of 77

(0 (
Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) o FAA - ATO

* ObjectType: identifies the type of the Transactable Object Set.

* ObjectCount: the number of objects in the Transactable Object Set, must

be greater than zero.

* Object Set: for each object, the following is provided:

* Operation: [Create, Update, Amend, Delete], with the following semantics:
* Create: new/original object being submitted. Its ObjectID and
ObjectVersion properties provided have been manufactured outside of
the recipient Data Source.

* Update: changes for an object version that already exists in the Data
Source. The ObjectID and ObjectVersion provided are those of the
recipient Data Source.

* Amend: changes that necessitate a new object version. The ObjectID
and ObjectVersion provided are those of the object taken from the
Data Source, i.e., the ObjectVersion has not been changed, and the
recipient Data Source must manufacture a new ObjectVersion.

* Delete: notice to remove an object from the Data Source. Depending
on the object type, the FAA Enterprise may explicitly delete the
object, or treat a delete as a cancellation.

* Object Properties: full description of object including all essential Object
Reference properties.

Note: For an object being deleted, only need its Object Reference, not a full
description.

10.2,.2 Response Message

The Response Message contains the following XML elements:

* Response Header: as specified in Section 4.5.2.1.

* Response Summary: states for each object in the Transactable Object Set:
* Object Receipt

* Operation: [Create, Update, Amend, Delete], as submitted.

* ObjectType: identifies the type of the Object, as submitted.

* Client Object Reference

* Namespace: as submitted.

* ObjectID: as submiited.

* ObjectVersion: as submitted.

* ObjectName: as submitted.

* Data Source Object Reference: includes properties that may be
manufactured by the Data Source

* Namespace: as manufactured by Data Source: a new value

AIRNAYV - Interface Control Document 66 of 77

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0} T FAA - ATO

from what was submitted for Create operation.

* ObjectID: as manufactured by Data Source: a new value from
what was submitted for Create operation.

» ObjectVersion: as manufactured by Data Source: a new value
from what was submitted for Create and Amend operations.

* ObjectName: as submitted.

* ProductionState (optional): any combination of the set of
[Working, Pending, Active, History, Future].

* EffectiveDate (optional): may be expressed as a GML
Timelnstant.

* EndDate (optional): may be expressed as a GML Timelnstant.
* ModificationDate (optional): may be expressed as a GML
Timelnstant.

10.2.3 Fault Message

The Fault Message contains the following XML elements:

* Fault Description: as specified in Section 4.5.3.1
» Fault Exceptions: as specified in Section 4.5.3.2

10.3 Usage

The typical fashion in which PutObject is intended to be used for the purpose of storing
data back into the FAA AVNIS data server is suggested below:

1. The operator uses the client application to create and edit data objects.

2. The operator uses the client application to prepare the data objects to submit to
a Data Source.
This includes specifying:
a) The Project under which the changes are being submitted.
b) For every changed Transactable Object, whether it 1s an amendment or
an update.

3. Once the operator confirms that the data is to be submitted, the client
application determines the first Transactabie Object Set to be sent to the Data
Source, based on the established order of precedence
a) For new objects, the client application provides manufactured ObjectID
and ObjectVersion.

4. The client application issues the PutObject request containing the first
Transactable Object Set.

AIRNAYV — Interface Control Document 67 of 77

Airpori Navigation Aid Database Application 2.0 (AIRNAV 2.0) B FAA - ATO

5. The FAA Enterprise data server validates the PutObject request.

a} The Project ID is validated, and the submission only proceeds if the

Project has been assigned to the UserID.

b) The Transactable Object Set is validated:
1. For an update operation, the data server verifies that the user has
update authorization.
2. For some ObjectTypes, the data server checks object-specific
properties, e.g., the Waiver justification is complete

6. The FAA Enterprise data server manufactures unspecified object properties.
For example,
a) ProductionState: based on the characteristics of the Project, the values
for object status are set, e.g., working, future, etc.
b) EffectiveDate: based on the target publication date for the Project, the
object’s effective date is set.

7. The FAA Enterprise data server inserts, updates, deletes the objects in the
Transactable Object Set as a single transaction. As part of the transaction, the
ObjectID and ObjectVersion are handled as follows:
a) Create operation: the data server manufactures a new unique ObjectID
and the ObjectVersion is set as ‘original’.
b) Update operation: the data server uses the ObjectID and ObjectVersion
provided.
¢} Amend operation: the data server re-uses the ObjectlD and
manufactures the next ObjectVersion.
d) Delete operation: the data server uses the ObjectID and ObjectVersion
provided.

8. The FAA Enterprise data server completes any follow-on “book-keeping”
resulting from the transaction. For example,
a) The Project is updated, adding Object References, possibly adding
Tasks.
b) Object-specific book-keeping is performed.

9. The FAA Enterprise data server assembles the PutObject response, including
object properties it has manufactured, e.g., ModificationDate.

10. The client application unpacks the PutObject response and updates its copies
of he objects submitted with the properties manufactured by the Data Source: one
or ore of ObjectID, ObjectVersion, ProductionState, EffectiveDate,
ModificationDate, etc.

11. The client application proceeds to the next Transactable Object Set in the
order of precedence, returning to step 4, until all have been stored on the FAA
Enterprise data server.

AIRNAY — Interface Control Document 68 of 77

Airport Navigation Aid Dai?.’s.(:v.ése= Application 2.0 (AIRNAV 2.0} FAA - ATO

11 GetConfigData Operation

This section specifies the GetConfigData operation: its purpose, design, content, and
usage, providing examples.

11.1 Purpose

The GetConfigData operation is used to retrieve new or updated configuration data from
the Data Server.

11.2 Context

This service supports the following:

* Country Code Reference Table
* Aerodrome Name Reference Table

11.3 Design

The GetConfigData request is sent by the client application to the server (Data Source).

The implementation 1s based on SOAP.

11.3.1 Request Message

The Request Message contains the following XML elements:
* Request Header: as specified in Section 4.5.1.1.
* Request Summary: contains
* ConfigurationSetName: cither the preset term “Master Index” or any
name assigned to a Configuration Set.
* ModificationDate:

11.3.2 Response Message

The Response Message contains the following XML elements:

AIRNAYV — Interface Control Document 69 of 77

, o F
i H {

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

* Response Header
* Response Summary: contains
* ConfigurationSetName: either the preset term ‘Master Index’ or any
name assigned to a Configuration Set.
» ModificationDate: date Configuration Set was last modified.
* Attachments: contains Configuration Set.

11.3.3 Fault Message

The Fault Message contains the following XML elements:
* Fault Description: as specified in Section 4.5.3.1
 Fault Exceptions: as specified in Section 4.5.3.2

12 AIXM-5 Schema Usage

This section specifies general rules for encoding AIXM features for the AVN WS. This
enables both sides of interface to encode data in the same consistent manner.

12.1 Natural Keys in AIXM-5 Xlinks

Wherever a feature has an xlink (object reference) to one of the feature types, the XPath
also includes a natural key that identifies the referenced feature.

Table 12-1 XPath Natural Key

ATIXM Feature Natural Key Attributes
AcerodromeHeliport designator
Runway

designator AerodromeHeliport designator

RunwayDirection
designator AerodromeHeliport designator

Service AtAerodromeHeliport
type AerodromeHeliport - designator

Navaid type identifier countryCode
NavaidEquipment type identifier countryCode
DesignatedPoint

designator countryCode

AIRNAV - Interface Controf Document f0of 77

{

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO

SafeAltitudeArea

safeAreaType protects_InstrumentApproachProcedure
{(xlink to InstrumentApproachProcedure)
basedOn_DesignatedPoint (xlink to DesignatedPoint)
basedOn_Navaid (xlink to Navaid)

HoldingPattern

type holdFixType outboundCourse
outboundCourseType turnDirection Navaid - type,
identifier, countryCode DesignatedPoint -~ designator,
countryCode

Obstacle

name type

InstrumentApproachProcedure

desipnCriteria name AerodromeHeliport - designator
RunwayDirection - designator

12.2 AIXM Types

This section specifies general rules for elements in AIXM features.

12.2.1 Empty Tags and Nil Attributes

In GetFeature and GetGmlIObject response messages, empty tags are not sent.

In PutFeature request messages, empty tags are not sent. Elements are handled by FAA

Enterprise as follows:

Insert:

Missing elements in the message are set to undefined in the FAA Enterprise. An
undefined property may also have its element attribute set to undefined (xsi:nil),
and are also set to undefined by the FAA Enterprise.

Update:

Elements must be set for all updated fields. The FAA Enterpnise only updates the
object properties that are included in the message, missing elements in the
message will leave the existing value unchanged in the FAA Enterprise. A client
may send elements for unchanged fields, the FAA Enterprise also updates these
object properties. If a property is changed to undefined, its element attribute must
be set to undefined (xsimil}, and it is set to undefined by the FAA Enterprise.

Amend:

An amend operation creates a new version of a feature, The process of creating
the new version is a copy followed by update. The FAA Enterprise makes a copy
of the object being updated, and then applies the update based on the message
contents. Hence the client need only send the amended properties (it may send
elements for unchanged fields).

AIRNAY — Interface Control Document

710f 77

{ {

Airport Navigation Aid Database Application 2.0 {AIRNAV 2.0) FAA - ATQ

Empty tags should not be sent. Elements must be set for all updated fields. The FAA
Enterprise only updates the object properties that are included in the message, missing
elements in the message leave the existing values unchanged in the FAA Enterprise. If
a property is changed to undefined, its element attribute must be set to undefined
{(xsi:nil), and it is set to undefined by the FAA Enterprise.

12.2.2 aixm:_Feature Elements
The aixm: Feature elements are used as follows:

* element gml;description: may be filled in by a client for debug purposes, but is
not used by the FAA Enterprise. The AVN-WS will not populate this element.

* element gml:name: may be filled in by a client for debug purposes, but is not
used by the FAA Enterprise. The AVN-WS will not populate this element.

* element gml:boundedBy: is not used.
» group aixm:Standard ATXMFeatureProperties: is used. It has the aixm:identifier.

* group aixm:DynamicFeatureProperties: is not used (it is a gml:validTime for a
feature)

* clement featureMetadata (ivpe="aixm:FeatureMetadataProperty Type™): feature
level metadata, see below.

12.2.3 aixm:AIXMTimeSliceType Elements

The aixm:ATXMTimeSliceType elements (see Figure 17-2) are used as follows:

* element giml:validTime: time element are coded as a gml:TimePeriod
for example:
<gml:validTime>
<gml:TimePeriod>
<gml:beginPosition>2004-01-15T00:00:00</gml:beginPosition>
<gml:endPosition indeterminatePosition="unknown” />
</gml: TimePeriod>
</gml:validTime>

* The gml:TimePosition frame and calendarEraName attributes are not used,
the Gregorian calendar with UTC is the default reference system. The

AIRNAYV — Interface Confrol Document 720f 77

{

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0)

FAA - ATO

gml:TimePosition element is the dateTime built-in simple type.

» The gml:TimePosition indeterminatePosition attribute is set to “unknown”
when no specific value for temporal position is provided.

* element aixm:interpretation: always either BASELINE, or PERM DELTA

(when operation is amend)

» element aixm:sequenceNumber: is not used

* element aixm:correctionNumber: 1s not used.

* glement timeSliceMetadata
(type="aixm:FeatureTimeSliceMetadataPropertyType)

12.3 MetaData

Table 12-3 lists the metadata elements that are required. It includes the name of the
mandatory element and its description, as well as how 1t maps to the ISO19115
standard. For core geographic datasets per ISO19115, (M) indicates that the element is
mandatory and (C) indicates that the element is conditionally mandatory. For reference,
in the third column of the table, we include the short name of the element and the row
number corresponding to Annex B.2 (Metadata package data dictionaries) of ISO19115.
For example, dateStamp from the MessageMetadata class is the date on which the
metadata for the ATXM message was compiled. The dateStamp element is mandatory
for geographic datasets per ISO19115, referred to as mdDateSt, and can be found in
row 9 of Annex B.2 in ISO19115. For those elements that are not in ISO19115,

the justification for a data element extension is stated.

Table 12-3 Mandatory AIXM Metadata Elements

Mandatory AIXM Metadata
Element

Description

Mapping to IS019115

FeatureTimeSliceMetadata dateStamp

Date on which the metadata for the
feature timeslice was compiled.

ISO 19115 (M) mdDateSt (9)

MesgsageMetadata > Contact
>systemName
FeatureTimeSliceMetadata > Contact
>gystemName

Name of the responsible system (i.e.,
database, or repository that
transmitted or compiled info). If
organization or individual name not
available, must include system name.

18019115 data element extension -
Needed a new element within the
responsible party class to describe the
responsible systern.

MessageMetadata > Contact
>organizationName
FeatureTimeSliceMetadata > Contact
>organizationName

Name of the responsible organization.

If individual or system name not
available, must include organization
name.

ISO19115 (C) rpOrgName (376)

AIRNAY — Interface Control Document

73 0f 77

Airport Navigation Aid Database Application 2.0 (AIRNAYV 2.0) FAA - ATO

MessageMetadata Brief narrative summary on the 13019115 (M) idAbs(25)
>messageldentificationInfo > abstract | contents of the AIXMmessage.
Contents can include multiple features
and operating instructions on how to

uge the feature data,
MessageMetadata The language used within the AIXM 15019115 (M) dataLang (3%). In
>messageldentificationInfo > message. Follows IS0639-2. Best 180191135, language has multiplicity.
language practice recommends the language to | We resirict domain to 1 language in
be English. ATXM model.

12.4 GML Types

12.4.1 Coordinate Reference System

A coordinate system is as set of (mathematical) rules for specifying how coordinates are
to be assigned to points. A coordinate reference system is a coordinate system that is
related to the real world by a datum. GML (and AIXM-5) requires a coordinate
reference system (CRS) to be referenced whenever location coordinate information 1s
given. CRS provides the meaning for location coordinates. The CRS is generally given
using the srsName (Spatial Reference System name) attribute of the GML elements, this
allows the CRS specified at each instance to be different.

Propose (from OGC document “URNs of definitions in oge namespace”, OGC 05-010)
that the URN value for an any URI that references an object in the European Petroleum
Survey Group (EPSG) database has the form: urn:ogc:defiobjectType:EPSG:version:code
The “authority” part of a URN is “EPSG”. The “‘code” part of a URN should be the
EPSG “code” unique identifier of the referenced definition. Alternately, the “code” part
of a URN can be the EPSG “name” unique identifier. The “version” part will be

included in this case, since the EPSG sometimes deprecates and replaces existing
definitions (latest version of EPSG 15 6.12).

For example, below specifies the co-ordinates are m WGS84:
<gml:Envelope srsName=" urn:ogc:def:crs:EPSG:6.12:43267>
<gml:lowerCorner>13.0983 31.5899</gml:lowerCormer>
<gml:upperCorner>35.5472 42 8143</gml:upperCormner>
</gml:Envelope>

The datums and their EPSG codes that are used by the AVN-WS are listed in Table

12.4.
Table 12-4 SRS EPSG Code

AIRNAY - Interface Control Document 74 of 77

i ‘ :
Alrport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

DVOF
Horizontal Datum Item Horizontal EPSG Code

Datum Code
Adindan, Sudan ADI 4201
Arc 1950, Africa ARF 4209
Arc 1960 ARS 4210
Ascension Island 1958 ASC 4712
Corrego Alegre, Brazil COA 4225
European EUR 4258
Guadeloupe Astro 1946 GUD 770
Heart North, Afghanistan HEN 4255
Hjorsey 1955, Iceland HIO 4658
Indian IND 4239 (Indian 1954)

4240 (Indian 1975)

Ireland 1965 IRL 4209
Keratu KEA 4245
Local {Local Astro) LOC 7777
Luzon, Philippines Luz 4353
Merchich, Morocco MER 43261
Nahwran NAH 4270
Nigerial NIG 4263
North American 1927 NAS 4267
Ordnance Survey of Great Britain 1936 | OGB 4277
Provisional South American 1956 PRP 4248
Timbalai 1948, Borneo TIL 4298
Tokyo TOK 4301
Undetermined | UND 7777
Wake-Eniwetok 1960 ENW 4732
Viti-Levu VTL 4731
World Geodetic System 1966 .| WGB 2779
World Geodetic System 1972 WGC 4322
World Geodetic System 1984 WGD 4326
World Geodetic System 1984 WGE 4326
Datum not listed in DVOF Manual Z7L

AIRNAYV - Interface Control Document 750f 77

{ : {

Airport Navigation Aid Database Application 2.0 (AIRNAV 2.0) FAA - ATO

12.4.2 GM_Point (gmi:PoiniType)

The gml:StandardObjectProperties group 1s not used (it contains elements
gml:metaDataProperty, gml:description, gml name).

The element gml:pos is used for all points (the other choice options gml:coord, and
gml:coordinates are deprecated with GML Version 3).

The gml:pos attributes is be used as follows:
= srsName: is as specified above
« srsDimension: is not used (is always 2)
* axisLabels: is not used
» uomLabels: 1s not used

Coordinates are always geodetic latitude, followed by geodetic longitude, in decimal
degrees, North positive, East positive.

12.5 Notes Object

12.5.1 Annotation Types

The ATXM Note object basically allows for only a textual annotation to a feature or
object. For AVN-WS, the ATXM Note object is extended to provide different types of
annotation:

Comment: A comment annotation has following attributes:
* Topic: The topic of the comment (see Table 17-4below).
* Text: The comment text (limited to 2000 characters).
» Date: Date added.
» Priority: The priority or sort order for printing. Also referred to as Print
Sequence.
» Feature type (on ENTITY COMMENT from COMMUNICATION)??

User Entered Standard Note: A user entered standard note has

following attributes:
* Topic: Equipment, Final Approach Course, Frequency, Holding, Obstacle,
Procedure, Profile, Profile2, Altimeter, Briefing, Briefing2, Plan/Prof, Planview.
» Print Block: Additional Flight Data, Final Segment, Notes A, Notes B.
» Chart Note: Boolean (codeYesNo).
* Text: Text of note.

AIRNAV - Interface Control Document 76 of 77

i
: i

Airport Navigation Aid Database Application 2.0 (AIRNAY 2.0) FAA - ATO

Standard Note: A standard note has following attributes:
 Note Control Number (from reference table).
* Parameters: Parameters to substitute in standard note text.
* Text: The completed note text.

Attachment:
» Topic: Describes attachment (limited to 2000 characters)
» File Size: Size of attachment (Kbyte)
* File Name: Attachment file name
» URL: Attachment file location
* Creator: Name of attachment creator

The Note object propertyName element is not used.

AIRNAYV - Interface Control Document 77 of 77

